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Introduction to spatial data and models

I Researchers in diverse areas such as climatology, ecology,
environmental exposure, public health, and real estate
marketing are increasingly faced with the task of analyzing
data that are:

I highly multivariate, with many important predictors and
response variables,

I geographically referenced, and often presented as maps, and
I temporally correlated, as in longitudinal or other time series

structures.

⇒ motivates hierarchical modeling and data analysis for complex
spatial (and spatiotemporal) data sets.



Introduction (cont’d)

Example: In an epidemiological investigation, we might wish to
analyze lung, breast, colorectal, and cervical cancer rates

I by county and year in a particular state

I with risk factors, e.g., age, race, smoking, mammography, and
other important screening and staging information also
available at some level.



Introduction (cont’d)

Example: In a meteorological investigation, we might wish to
analyze temperature and precipitation data

I with say hourly or daily measurements at a network of
monitoring station

I with a mean surface that reflects say elevation, perhaps a
trend in elevation



Introduction (cont’d)

Example: In an ecological setting, we may be interested in the
point pattern of locations for say two different species, e.g., juniper
trees and pine trees

I with geo-coded locations for each of the trees and a label
indicating which species

I and environmental features to explain species distribution

I possibly collected over time in order to see change, evolution,
diffusion of the patterns



Introduction (cont’d)

One may be interested in displaying the data collected but may also
have interest in carrying out statistical inference tasks, such as

I modeling of trends and correlation structures

I estimation of underlying model parameters

I hypothesis testing (or comparison of competing models)

I prediction at unobserved times or locations

I regression specifications to explain spatial response.

I Conceptualize a process model specification:
[data—process,parameters]
[process—parameters][parameters]

=⇒ all naturally accomplished through hierarchical modeling
implemented via Markov chain Monte Carlo (MCMC) methods!



Existing spatial statistics books
I Cressie (1990, 1993): the legendary “bible” of spatial

statistics, but rather high mathematical level, lacks modern
hierarchical modeling/computing

I Update is Cressie and Wikle (2011) Statistics for
Spatio-temporal Data

I The Handbook of Spatial Statistics (Gelfand et al., 2010)

I Wackernagel (1998): terse; only geostatistics

I Chiles and Delfiner (1999): only geostatistics

I Stein (1999a): theoretical treatise on kriging

I So, of course Banerjee, Carlin, and Gelfand (2014)!

I More descriptive presentations: Bailey and Gattrell (1995),
Fotheringham and Rogerson (1994), or Haining (1990).

Our primary focus is on modeling, computing, and data
analysis.



Types of spatial data

I point-referenced data, where Y (s) is a random vector at a
selected location s ∈ <r and s varies continuously over D, a
fixed subset of <r ;

I areal data, where D is again a fixed subset (of regular or
irregular shape), but now partitioned into a finite number of
areal units with well-defined boundaries and observations are
associated with the areal units; discrete spatial data

I point pattern data, where now the set of locations in D is
itself random; its index set gives the locations of random
events that are the spatial point pattern. Can assign Y (s) = 1
for all s ∈ D (indicating occurrence of the event), or possibly
assign labels to the points (producing a marked point pattern
process).



Point-level (geostatistical) data 
 

 

< 12.9 
12.9 - 13.7 
13.7 - 14.6 
14.6 - 15.5 
15.5 - 16.4 
16.4 - 17.3 
17.3 - 18.1 
18.1 - 19 
19 - 19.9 
> 19.9 





Notes on areal data

I This figure is an example of a choropleth map, which uses
shades of color (or greyscale) to classify values into a few
broad classes, like a histogram

I From the choropleth map we know which regions are adjacent
to (share a boundary or a corner) which other regions.

I Thus the “sites” s ∈ D in this case are actually the regions (or
blocks) themselves, which we will denote not by si but by
Bi , i = 1, . . . , n.







A few words on cartography

I The earth is round! So (longitude, latitude) 6= (x , y)!

I A map projection is a systematic representation of all or part
of the surface of the earth on a plane.

I Theorem: The sphere cannot be flattened onto a plane
without distortion

I Instead, use an intermediate surface that can be flattened.
The sphere is first projected onto the this developable surface,
which is then laid out as a plane.

I The three most commonly used surfaces are the cylinder, the
cone, and the plane itself.

I Using different orientations of these surfaces leads to different
classes of map projections...







cont.

Writing (longitude, latitude) as (λ, θ), projections are

x = f (λ, φ), y = g(λ, φ) ,

where f and g are chosen based upon properties our map must
possess. This sinusoidal projection preserves area.





cont.

While no projection preserves distance (Gauss’ Theorema
Eggregium in differential geometry), this famous conformal
(angle-preserving) projection distorts badly near the poles.



Basics of Point-Referenced Data Models

I Basic tool is a spatial process, {Y (s), s ∈ D}, where D ⊂ <r

I Note that time series follows this approach with r = 1; we will
usually have r = 2 or 3

I We begin with essentials of point-level data modeling,
including stationarity, isotropy, and variograms – key elements
of the “Matheron school”

I No formal inference, just least squares optimization

I We add the spatial (typically Gaussian) process modeling that
enables likelihood (and Bayesian) inference in these settings.







Stationarity

Suppose our spatial process has a mean, µ (s) = E (Y (s)), and
that the variance of Y (s) exists for all s ∈ D.

I The process is said to be strictly stationary (also called
strongly stationary) if, for any given n ≥ 1, any set of n sites
{s1, . . . , sn} and any h ∈ <r , the distribution of
(Y (s1) , . . . ,Y (sn)) is the same as that of
(Y (s1 + h) , . . . ,Y (sn + h)).

I A less restrictive condition is given by weak stationarity (also
called second-order stationarity): A process is weakly
stationary if µ (s) ≡ µ and Cov (Y (s) ,Y (s + h)) = C (h) for
all h ∈ <r such that s and s + h both lie within D.



Notes on Stationarity

I Weak stationarity says that the covariance between the values
of the process at any two locations s and s + h can be
summarized by a covariance function C (h) (sometimes called
a covariogram), and this function depends only on the
separation vector h.

I Note that with all variances assumed to exist, strong
stationarity implies weak stationarity.

I The converse is not true in general, but it does hold for
Gaussian processes



Gaussian processes

I The process Y (s) is said to be Gaussian, i.e., a Gaussian
process, a GP, if, for any n ≥ 1 and any set of sites
{s1, s2, ..., sn}, Y = (Y (s1),Y (s2), ...,Y (sn)) has a
multivariate normal distribution.

I How do we create the multivariate normal distribution?

I We specify a mean function µ(s) and a “valid” covariance
function C (s, s′) ≡ cov(Y (s),Y (s′))

I Then, Y ∼ N(µ,Σ) where µi = µ(si ) and Σij = C (si , sj).

I The mean function is usually some sort of regression
specification

I The covariance function is specified through a few parameters
say θ, so we have Σ(θ) providing structured dependence



Why do we love GPs?
I Restriction to Gaussian processes enables several advantages.
I Convenient specification: the mean function and the

covariance function determine all distributions.
I Convenient distribution theory. Joint marginal and conditional

distributions are all immediately obtained from standard
theory given the mean and covariance structure.

I With hierarchical modeling, a Gaussian process assumption for
spatial random effects at the second stage of the model aligns
with the way independent random effects with variance
components are customarily introduced in foregoing linear or
generalized linear mixed models.

I Technically, with Gaussian processes and stationary models,
strong stationarity is equivalent to weak stationarity

I It is difficult to criticize a Gaussian assumption. We have
Y = (Y (s1),Y (s2), ...,Y (sn)), a single realization from an
n-dimensional distribution. With a sample size of one, how
can we criticize any multivariate distributional specification?



Wait a minute!

I Strictly speaking this last assertion is not quite true with a
Gaussian process model.

I That is, the joint distribution is a multivariate normal with
mean, say, 0, and a covariance matrix that is a parametric
function of the parameters in the covariance function.

I As n grows large enough, the effective sample size will also
grow.

I By linear transformation we can obtain a set of approximately
uncorrelated variables through which the adequacy of the
normal assumption might be studied.



Variograms

I Suppose we assume E [Y (s + h)− Y (s)] = 0 and define

E [Y (s + h)− Y (s)]2 = Var (Y (s + h)− Y (s)) = 2γ (h) .

I This expression only looks at the difference between variables.
If the left hand side depends only on h and not the particular
choice of s, we say the process is intrinsically stationary.

I The function 2γ (h) is then called the variogram, and γ (h) is
called the semivariogram.

Intrinsic stationarity requires only the first and second moments of
the differences Y (s + h)− Y (s). It says nothing about the joint
distribution of a collection of variables Y (s1), . . . ,Y (sn), and thus
provides no likelihood.



Relationship between C (h) and γ(h)

I We have

2γ(h) = Var (Y (s + h)− Y (s))

= Var(Y (s + h)) + Var(Y (s))− 2Cov(Y (s + h),Y (s))

= C (0) + C (0)− 2C (h)

= 2 [C (0)− C (h)] .

I Thus,
γ (h) = C (0)− C (h) .

I So given C , we are able to determine γ.

I But what about the converse: can we recover C from γ?...



Relationship between C (h) and γ(h)

I In the relationship γ (h) = C (0)− C (h) we can ± a constant
on the right side so C (h) is not identified

I Usually, we want the spatial process to be ergodic. Otherwise,
no good inference properties.

I This means C (h)→ 0 as ||h|| → ∞, where ||h|| is the length
of h.

I If so, then, as ||h|| → ∞, γ(h)→ C (0)

I Hence, C (h) = C (0)− γ(h) and both terms on the right side
depend on γ(·) So C (h) is now well defined given γ(h)

So, previous slide showed that weak stationarity implies intrinsic
stationarity. The converse is not true in general but is with the
above condition on γ(h)



Isotropy

I If the semivariogram γ (h) depends upon the separation vector
only through its length ||h||, then we say that the process is
isotropic.

I For an isotropic process, γ (h) is a real-valued function of a
univariate argument, and can be written as γ (||h||).

I If the process is intrinsically stationary and isotropic, it is also
called homogeneous.

Isotropic processes are popular because of their simplicity,
interpretability, and because a number of relatively simple
parametric forms are available as candidates for C (and γ).
Denoting ||h|| by t for notational simplicity, the next two tables
provide a few examples...



Some common isotropic covariograms

Model Covariance function, C (t)

Linear C (t) does not exist

Spherical C (t) =


0 if t ≥ 1/φ

σ2
[
1− 3

2φt + 1
2 (φt)3

]
if 0 < t ≤ 1/φ

τ2 + σ2 if t = 0

Exponential C (t) =

{
σ2 exp(−φt) if t > 0
τ2 + σ2 if t = 0

Powered
exponential

C (t) =

{
σ2 exp(−|φt|p) if t > 0

τ2 + σ2 if t = 0
Matérn
at ν = 3/2

C (t) =

{
σ2 (1 + φt) exp(−φt) if t > 0

τ2 + σ2 if t = 0



Some common isotropic variograms

model Variogram, γ(t)

Linear γ(t) =

{
τ2 + σ2t if t > 0

0 if t = 0

Spherical γ(t) =


τ2 + σ2 if t ≥ 1/φ

τ2 + σ2
[

3
2φt −

1
2 (φt)3

]
if 0 < t ≤ 1/φ

0 if t = 0

Exponential γ(t) =

{
τ2 + σ2(1− exp(−φt)) if t > 0

0 if t = 0
Powered
exponential

γ(t) =

{
τ2 + σ2(1− exp(−|φt|p)) if t > 0

0 if t = 0
Matérn
at ν = 3/2

γ(t) =

{
τ2 + σ2

[
1− (1 + φt) e−φt

]
if t > 0

0 if t = 0



Example: Spherical semivariogram

γ(t) =


τ2 + σ2 if t ≥ 1/φ

τ2 + σ2
[

3
2φt −

1
2 (φt)3

]
if 0 < t ≤ 1/φ

0 otherwise

I While γ(0) = 0 by definition, γ(0+) ≡ limt→0+ γ(t) = τ2; this
quantity is the nugget.

I limt→∞ γ(t) = τ2 + σ2; this asymptotic value of the
semivariogram is called the sill. (The sill minus the nugget, σ2

in this case, is called the partial sill.)

I The value t = 1/φ at which γ(t) first reaches its ultimate
level (the sill) is called the range, here R ≡ 1/φ. (Both R and
φ are sometimes referred to as the ”range,” but φ should be
called the decay parameter.)





The exponential model

I The sill is only reached asymptotically, meaning that strictly
speaking, the range is infinite.

I To define an ”effective range”, for t > 0, we see that as
t →∞, γ(t)→ τ2 + σ2 which would become C (0).

I Again,

C (t) =

{
τ2 + σ2 if t = 0

σ2 exp(−φt) if t > 0
.

I Then the correlation between two points distance t apart is
exp(−φt);

I We define the effective range, t0, as the distance at which this
correlation = 0.05. Setting exp(−φt0) equal to this value we
obtain t0 ≈ 3/φ, since log(0.05) ≈ −3.



cont.

I We introduce an intentional discontinuity at 0 for both the
covariance function and the variogram.

I To clarify why, suppose we write the error at s in our spatial
model as w(s) + ε(s) where w(s) is a mean 0 process with
covariance function σ2ρ(t) and ε(s) is so-called “white noise”,
i.e., the ε(s) are i.i.d. N(0, τ2)

I Then, we can compute var(w(s) + ε(s)) = σ2 + τ2

I And, we can compute
Cov(w(s) + ε(s),w(s + h) + ε(s + h)) = σ2ρ(||h||)

I So, the form of C (t) shows why the nugget τ2 is often viewed
as a “nonspatial effect variance,” and the partial sill (σ2) is
viewed as a “spatial effect variance.”



The Matérn Correlation Function

I The Matèrn is a very versatile family:

C (t) =

{
σ2

2ν−1Γ(ν)
(2
√
νtφ)νKν(2

√
(ν)tφ) if t > 0

τ2 + σ2 if t = 0

Kν is the modified Bessel function of order ν (computationally
tractable in C/C++ or geoR)

I ν is a smoothness parameter:
I ν = 1/2⇒ exponential; ν →∞⇒ Gaussian; ν = 3/2⇒

convenient closed form for C (t), γ(t)
I in two-dimensions, the greatest integer in ν indicates the

number of times process realizations will be mean-square
differentiable.



A bit more on covariance functions

I To be a valid covariance function the function must be
positive definite

I Whether a function is positive definite or not can depend
upon dimension

I c is a valid covariance functions if and only if it is the
characteristic function of a symmetric about 0 random
variable (Bochner’s Theorem), i.e., c(h) =

∫
cos(wTh)G (dw)

I Fourier transform, spectral distribution, spectral density

I In principle, the inversion formula could be used to check if
c(h) is valid



Constructing valid covariance functions

Construct valid covariance functions by using properties of
characteristic functions

I multiply valid covariance functions (corresponds to summing
independent random variables)

I mixing covariance functions (corresponds to mixing
distributions)

I convolving covariance functions (if c1 and c2 are valid then
c12(s) =

∫
c1(s− u)c2(u)du is valid).

I There are conditions for valid variograms but difficult and not
of interest for us.



Variogram model fitting

How does one choose a good parametric variogram model?

I First, one plots the empirical semivariogram,

γ̂(t) =
1

2N(t)

∑
(si ,sj )∈N(t)

[Y (si )− Y (sj)]2 ,

where N(t) is the set of pairs such that ||si − sj || = t, and
|N(t)| is the number of pairs in this set.

I Usually need to “grid up” the t-space into bins
I1 = (0, t1), . . . , IK = (tK−1, tK ) for 0 < t1 < · · · < tK .
Represent each interval by its midpoint, and redefine

N(tk) = {(si , sj) : ||si − sj || ∈ Ik} , k = 1, . . . ,K .

I ˆγ(t) will not be valid





Variogram model fitting (cont’d)

I This method of moments estimator (analogue of the usual
sample variance s2) has problems:

I It will be sensitive to outliers

I A sample average of squared differences can be badly behaved.

I It uses data differences, rather than the data itself.

I The components of the sum will be dependent within and
across bins, and N(tk) will vary across bins.

I Informally, one plots γ̂(t), and then an appropriately shaped
theoretical variogram is fit by eye or by trial and error to
choose the nugget, sill, and range.

I Formal fitting using least squares, weighted least squares or
generalized least squares



Anisotropy

I Isotropy implies circular contours in terms of decay in spatial
dependence, i.e., association doesn’t depend upon direction

I Stationarity is more general in that it allows association to
depend upon the separation vector between locations (i.e.,
direction and distance).

I As special case is geometric anisotropy, where

c(s− s′) = σ2ρ((s− s′)TB(s− s′)) .

I B is positive definite with ρ a valid correlation function.

I Since the equation (s− s′)TB(s− s′) = k is an ellipse in
2-dim space, spatial dependence is constant on ellipses. This
means dependence depends on direction. In particular, the
contour corresponding to ρ = .05 provides the effective range
in each spatial direction.



Anisotropy (cont’d)

I Both geometric anisotropy and product geometric anisotropy
are special cases of range anisotropy (Zimmerman, 1993)

I Suggests we might also define sill anisotropy: Given a
variogram γ(h), what is the behavior of γ(ch/ ‖h‖) as
c →∞? Does it depend upon h

I nugget anisotropy: Given a variogram γ(h), what is the
behavior of γ(ch/ ‖h‖) as c → 0? Does it depend upon h.



Exploration of Spatial Data

I First step in analyzing data

I First Law of Geostatistics: Mean + Error

I Mean: first-order behavior

I Error: second-order behavior (covariance function)

I Wide variety of EDA tools to examine both first and second
order behavior (Cressie’s book)

I Crucial point: the spatial structure you might see in the Y (s)
surface need not look anything like the spatial structure in the
residual surface, after you have fit an explanatory model for
the mean, say µ(s).

E ((Y (s)− µ(s))(Y (s′)− µ(s′)) = E ((Y (s)− µ)(Y (s′)− µ)

+(µ− µ(s))(µ− µ(s′))











Classical spatial prediction (Kriging)

I Named in honor of D.G. Krige, a South African mining
engineer whose seminal work on empirical methods for
geostatistical data inspired the general approach

I Optimal spatial prediction: given observations of a random
field Y = (Y (s1) , . . . ,Y (sn))′, predict the variable Y at a
site s0 where it has not been observed

I Under squared error loss, the best linear prediction minimizes
E [Y (s0)− (

∑
`iY (si ) + δ0)]2 over δ0 and `i .

I Under intrinsic stationarity, adopting unbiasedness, δ0 drops
out. Obviously, Ȳ is not best.

I With an estimate of γ, one immediately obtains the ordinary
kriging estimate.

I No distributional assumptions are required for the Y (si ).



Difficulties

I Limitation of a constant mean - so introduce a mean surface
and then universal kriging

I mean surface unknown

I variogram unknown

I if we put estimates of both into the kriging equations we fail
to take into account the uncertainty in these estimates

I so, we turn to Gaussian process, work with the covariance
function and now have a likelihood

I we redo prediction in this setting



Kriging with Gaussian processes

I Given covariate values x(si ), i = 0, 1, . . . , n, suppose

Y = Xβ + ε, where ε ∼ N (0,Σ) .

I For a spatial covariance structure having no nugget effect, we
specify Σ as

Σ = σ2H (φ) where (H (φ))ij = ρ (φ; dij) ,

with dij = ||si − sj ||, the distance between si and sj , and ρ is
a valid correlation function.

I For a model having a nugget effect, we instead set

Σ = σ2H (φ) + τ2I ,

where τ2 is the nugget effect variance.



Kriging with Gaussian processes

I We seek the function g (y) that minimizes the mean-squared

prediction error, E
[
(Y (s0)− g (y))2 y

]
, i.e., we work with

the conditional distribution of Y (s0)|y
I It is well known that the (posterior) mean minimizes expected

squared error loss.

I So, it must be that the predictor g(y) that minimizes the
error is the conditional expectation, E (Y (s0)|y).



Kriging with Gaussian processes

I Now consider estimation of this best predictor, first in the
completely unrealistic situation in which all the population
parameters (β, σ2, φ, and τ2) are known. Suppose(

Y1

Y2

)
∼ N

((
µ1

µ2

)
,

(
Ω11 Ω12

Ω21 Ω22

))
,

where Ω21 = ΩT
12.

I Then f (Y1|Y2) is normal with mean and variance

E [Y1|Y2] = µ1 + Ω12Ω−1
22 (Y2 − µ2)

and Var [Y1|Y2] = Ω11 − Ω12Ω−1
22 Ω21 .



Kriging with Gaussian processes

I In our framework, Y1 = Y (s0) and Y2 = y, meaning that
Ω11 = σ2 + τ2, Ω12 = γT , and Ω22 = Σ = σ2H (φ) + τ2I ,
where γT =

(
σ2ρ (φ; d01) , . . . , σ2ρ (φ; d0n)

)
.

I Substituting these values into the mean and variance formulae
above, we obtain

E [Y (s0)|y] = xT0 β + γTΣ−1 (y− Xβ) ,

andVar [Y (s0)|y] = σ2 + τ2 − γTΣ−1γ .

I Pretty forms but useless since we don’t know any of the
model parameters



Kriging with Gaussian processes

I So, consider how these answers are modified in the more
realistic scenario where the model parameters are unknown.
We modify g(y) to

ĝ (y) = xT0 β̂ + γ̂T Σ̂−1
(
y− X β̂

)
,

where γ̂ =
(
σ̂2ρ(φ̂; d01), . . . , σ̂2ρ(φ̂; d0n)

)T
, Σ̂ = σ̂2H(φ̂),

and β̂ = β̂WLS =
(
XT Σ̂−1X

)−1
XT Σ̂−1y.

I Thus ĝ (y) can be written as λTy, where

λ = Σ̂−1γ̂ + Σ̂−1X
(
XT Σ̂−1X

)−1 (
x0 − XT Σ̂−1γ̂

)
.



Kriging with Gaussian processes

I If X (s0) is unobserved, we can still do the spatial prediction

I We estimate X (s0) and Y (s0) jointly by iterating between the
formula for ĝ(y) and a corresponding one for x̂0, namely

x̂0 = XTλ ,

which arises simply by multiplying both sides of the previous
equation by XT and simplifying.

I This is essentially an EM (expectation-maximization)
algorithm, with the calculation of x̂0 being the E step and the
updating of λ being the M step.

I In the classical framework, restricted maximum likelihood
(REML) estimates are often plugged in above and have some
optimal properties.




