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Basics of areal data models; THE ISSUES
I Here we consider regular grids or lattices and irregular areal

units but NOT large point referenced datasets

I (i) Is there spatial pattern? If so, how strong is it? Intuitively,
“spatial pattern” suggests that measurements for areal units
which are near to each other will tend to take more similar
values than those for units far from each other

I (ii) Do we want to smooth the data? If so, how much? If the
measurement for each unit is a count, even if the counts were
independent, and perhaps after population adjustment, there
would still be extreme values. Are the observed high counts
more elevated than would be expected by chance?

I Under smoothing of counts high values would tend to be
pulled down, the low values to be pushed up.

I No smoothing: a display using simply the observed

I Maximal smoothing: a single common value for all units

I Desired smoothing: somewhere in between

I How much smoothing is appropriate is not defined.



Issues

I (iii) Inference for new areal units? What data values we
expect to be associated with these units?

I If we modify the areal units to new units, e.g., from zip codes
to census block groups, what can we say about cancer counts
we expect for the latter given those for the former?

I This is the modifiable areal unit problem (MAUP),

I (iv) Descriptive/algorithmic vs. Model-based. We suggest
model-based approaches to treat the above issues, as opposed
to the more descriptive or algorithmic methods that have
dominated the literature and are widely available in GIS
software packages.





Proximity matrices

I W , entries wij (with wii = 0). Choices for wij :

I wij = 1 if i , j share a common boundary (possibly a common
vertex)

I wij is an inverse distance between units

I wij = 1 if distance between units is ≤ K

I wij = 1 for m nearest neighbors

I W is typically symmetric, but need not be

I W̃ : standardize row i by wi+ =
∑

j wij (so matrix is now row
stochastic, but probably no longer symmetric).

I W elements often called “weights”; interpretation

I Could also define first-order neighbors W (1), second-order
neighbors W (2), etc.



Measures of spatial association

I Moran’s I : essentially an “areal covariogram”

I =
n
∑

i

∑
j wij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i 6=j wij)
∑

i (Yi − Ȳ )2

I Geary’s C : essentially an “areal variogram”

C =
(n − 1)

∑
i

∑
j wij(Yi − Yj)

2

(
∑

i 6=j wij)
∑

i (Yi − Ȳ )2

I Both are asymptotically normal if Yi are i.i.d.;
Moran has mean −1/(n − 1) ≈ 0, Geary has mean 1

I Better significance testing by comparing to a collection of say
1000 random permutations of the Yi





Measures of spatial association (cont’d)

I For these data, we obtain a Moran’s I of 0.5833, with
associated standard error estimate 0.0920 ⇒ very strong
evidence against H0 : no spatial correlation

I We obtain a Geary’s C of 0.3775, with associated standard
error estimate 0.1008 ⇒ again, very strong evidence against
H0 (departure from 1)

I Warning: These data have not been adjusted for covariates,
such as the proportion of students who take the exam.
(Midwestern colleges have historically relied on the ACT, not
the SAT; only the best and brightest students in these states
would bother taking the SAT)







Binary data correlogram

I With large, regular grids, may seek to study spatial
association in a particular direction (e.g., east-west,
north-south, southwest-northeast, etc.).

I Now the spatial component reduces to one dimension and we
can compute lagged autocorrelations (lagged appropriately to
the size of the grid cells) in a specific direction.

I An analogue for the case where the Yi are binary responses
(e.g., presence or absence of forest in the cell) (Agarwal et al.)

I A version of a correlogram for a binary map, using two-way
tables and log odds ratios at pixel level





Spatial smoothers

I To smooth Yi , replace with Ŷi =
∑

i wijYj

wi+

I More generally, we could include the value actually observed
for unit i , and revise our smoother to

(1− α)Yi + αŶi

I For 0 < α < 1, this is a linear (convex) combination in
“shrinkage” form. How to choose α?

I Finally, we could try model-based smoothing, i.e., based on
E (Yi |Data), i.e., the mean of the predictive distribution.
Smoothers then emerge as byproducts of the hierarchical
spatial models we use to explain the Yi ’s



Markov random fields

I Consider Y = (Y1,Y2, ...,Yn) and the set of densities
{p(yi |yj , j 6= i)}

I We know p(y1, y2, ...yn) determines {p(yi |yj , j 6= i)}
(the set of full conditional distributions)

I Does {p(yi |yj , j 6= i)} determine p(y1, y2, ...yn) ???

I We need the notion of compatibility. With two variables,
when are p(y1|y2) and p(y2|y1) compatible? Not always, e.g.,
p(y1|y2) = N(a + by2, σ

2
1) and p(y2|y1) = N(c + dy31 , σ

2
2)



Brook’s Lemma
I If the full conditionals are compatible, then Brook’s Lemma

provides a way to construct the joint distribution from the full
conditionals

I We can write the joint distribution as

p(y1, . . . , yn) =
p(y1, y2, . . . , yn)

p(y10, y2, . . . , yn)

p(y2, y10, y3, . . . , yn)

p(y20, y10, y3, . . . , yn)

. . .
p(yn, y10, . . . , yn−1,0)

p(yn0, y10, . . . , yn−1,0)
p(y10, . . . , yn0)

I Replacing each joint distributions with conditional ×
marginal, the marginal terms cancel and we have

p(y1, . . . , yn) =
p(y1|y2, . . . , yn)

p(y10|y2, . . . , yn)

p(y2|y10, y3, . . . , yn)

p(y20|y10, y3, . . . , yn)

. . .
p(yn|y10, . . . , yn−1,0)

p(yn0|y10, . . . , yn−1,0)
p(y10, . . . , yn0)



Brook’s Lemma cont.

I We have the joint distribution on the left side in terms of the
full conditional distributions on the right side

I And, if left side is proper, since it integrates to 1, the
normalizing constant is determined by integrating the right
side and then rescaling to 1

I We have a constructive way to retrieve the joint distribution
from the full conditional distributions

I Useful in many other problems



“Local” modeling

I Suppose we specify the full conditionals such that

p(yi |yj , j 6= i) = p(yi |yj ∈ ∂i ) ,

where ∂i is the set of neighbors of cell (region) i .
When does {p(yi |yj ∈ ∂i )} determine p(y1, y2, ...yn)?

I Def’n: a clique is a set of cells such that each element is a
neighbor of every other element

I Def’n: a potential function of order k is a positive function of
k arguments that is exchangeable in these arguments. A
potential of order 2 is Q(yi , yj) with Q(yi , yj) = Q(yj , yi )

I Def’n: p(y1, . . . , yn) is a Gibbs distribution if, as a function of
the yi , it is a product of potentials on cliques. With potentials
of order 2, p(y1, . . . , yn) = Πi<jQ(yi , yj)



“local” modeling, cont.

I For a continuous variable, with k = 2, we might take
Q(yi , yj) = exp(−wi ,j(yi − yj))2

I For binary data, k = 2, we might take
Q(yi , yj) = I (yi = yj) = yiyj + (1− yi )(1− yj)

I Cliques of size 1 ⇔ independence

I Cliques of size 2 with above Q for continuous variables and
wi ,j = I (i ∼ j)⇔ pairwise difference form

p(y1, y2, ...yn) ∝ exp

− 1

2τ2

∑
i ,j

(yi − yj)
2I (i ∼ j)


and therefore p(yi |yj , j 6= i) = N(

∑
j∈∂i yj/mi , τ

2/mi ), where
mi is the number of neighbors of i

I No interest in k > 2.



Two primary results

I Hammersley-Clifford Theorem: If we have a Markov Random
Field (i.e., {p(yi |yj ∈ ∂i )} uniquely determine p(y1, y2, ...yn)),
then the latter is a Gibbs distribution

I Geman and Geman result : If we have a joint Gibbs
distribution, i.e., as defined above, then we have a Markov
Random Field



Conditional autoregressive (CAR) model

I Gaussian (autonormal) case

p(yi |yj , j 6= i) = N

∑
j

bijyj , τ
2
i


Using Brook’s Lemma we can obtain

p(y1, y2, ...yn) ∝ exp

{
−1

2
y′D−1(I − B)y

}
where B = {bij} and D is diagonal with Dii = τ2i .

I ⇒ suggests a multivariate normal distribution with µY = 0
and ΣY = (I − B)−1D

I D−1(I − B) symmetric requires
bij
τ2i

=
bji
τ2j

for all i , j



CAR Model (cont’d)
I Returning to W , let bij = wij/wi+ and τ2i = τ2/wi+, so

p(y1, y2, ...yn) ∝ exp

{
− 1

2τ2
y′(Dw −W )y

}
.

Dw diagonal with (Dw )ii = wi+ and with algebra,

p(y1, y2, ...yn) ∝ exp

− 1

2τ2

∑
i 6=j

wij(yi − yj)
2


Intrinsic autoregressive (IAR) model!

I Improper since (Dw −W )1 = 0, so requires a constraint –
say,

∑
i yi = 0

I So, not a data model, a random effects model!

I τ2 represents both dispersion and spatial dependence



CAR Model Issues

I With τ2 unknown, what to do with power of τ2 in joint
distribution? (n− # of “islands”)

I “Proper version:” replace Dw −W by Dw − ρW , and choose
ρ so that Σy = (Dw − ρW )−1 exists!
This in turn implies Yi |Yj 6=i ∼ N(ρ

∑
j wijYj , τ

2/mi )

“To ρ or not to ρ?”

I Advantages:

I makes distribution proper

I adds parametric flexibility

I ρ = 0 interpretable as independence



CAR Models with ρ parameter

Disadvantages:

I why should we expect Yi to be a proportion of average of
neighbors – a sensible spatial interpretation?

I calibration of ρ as a correlation, e.g.,

ρ = 0.80 yields 0.1 ≤ Moran’s I ≤ 0.15,

ρ = 0.90 yields 0.2 ≤ Moran’s I ≤ 0.25,

ρ = 0.99 yields Moran’s I ≤ 0.5

I So, used with random effects, scope of spatial pattern may be
limited



More CAR modeling

I Again, CAR is an improper prior for modeling random effects
with inverse covariance matrix 1

τ2
Q where Q = (DW −W )

I To make a data model, Yi = µi + φi + εi where φi from a
CAR and εi are i.i.d. N(0, γ2), i.e., Yi |µi , φi ∼ N(µi + φi , γ

2)

I Two variance components - τ2 captures structured spatial
variation, γ2 captures unstructured variation

I If Q were full rank Σφ+ε = τ2Q−1 + γ2In. With

reparametrization becomes σ2(λQ−1 + (1− λ)In)



cont.

I But Q not full rank so instead write (Leroux et al.)
Σ−1
φ+ε

= 1
σ2 (λQ + (1− λ)In)

I Now Σ−1
φ+ε

full rank

I Σφ+ε = σ2(λQ + (1− λ)In)−1

I Corresponds to marginalization. As a result, we have random
effects ηi with η ∼ N(0,Σφ+ε)

I Now E (ηi |ηj , j 6= i) = λ
1−λ+λmi

∑
j∼i ηj

I Now Var(ηi |ηj , j 6= i) = σ2

1−λ+λmi

I A reparametrization to φ + ε

I λ = 1 is IAR model, λ = 0 is independence model



cont.

I Another variation allows spatially varying, directional,
adaptive weights w̃ij = wije

Zi where Zi = Z (s∗i ) with s∗i the
centroid of areal unit i and Z (·) a mean 0 Gaussian process
(Berrocal et al.)

I A conditional CAR model, given {Zi}
I More general proximities

I Model weights based on the forward difference analogue of
penalizing the derivatives of a surface under a thin plate
spline.

I Consider twelve neighbors of a given point.

I North, east, south, and west neighbors each weight +8, the
northeast, southeast, southwest, and northwest neighbors,
each weight −2 and the “two away” north, east, south, and
west neighbors, each weight −1. Thus, wi+ = 20

I Unusual for spatial smoothing but a probabilistic justification
through the two-dimensional random walk on the lattice.



Comments

I The CAR specifies Σ−1Y , NOT ΣY (as in the point-level
modeling case), so does not directly model association

I (Σ−1Y )ii = 1/τ2i ; (Σ−1Y )ij = 0⇔ conditional independence

I Prediction at new sites is ad hoc; if

p(y0|y1, y2, ...yn) = N(
∑
j

w0jyj/w0+, τ
2/w0+)

then p(y0, y1, ...yn) well-defined but not CAR



NonGaussian versions

I To model the data directly using a CAR specification in many
cases a normal distribution would not be appropriate.

I Binary response, sparse counts, categorical data are examples.

I Here, focus on case where the Yi are binary variables, the
so-called autologistic CAR model

I Ignoring covariates, consider the joint distribution
p(y1, y2, ..., yn;ψ)

∝ exp(ψ
∑
i ,j

wij1(yi = yj)) = exp(ψ
∑
i ,j

wij(yiyj+(1−yi )(1−yj))).

I A Gibbs distribution with a potential on cliques of order k = 2.

I Always proper since it can take on only 2n values. However, ψ
is an unknown parameter and need to calculate the
normalizing constant c(ψ) in order to infer about ψ

I Computation of this constant requires summation over all of
the 2n possible values that (Y1,Y2, ...,Yn) can take on.



cont.

I We can obtain the full conditional distributions for the Yi ’s.
In fact, P(Yi = 1|yj , j 6= i) = eψSi,1/(eψSi,0 + eψ(Si,1)) where
Si ,1 =

∑
j∼i 1(yj = 1) and Si ,0 =

∑
j∼i 1(yj = 0) and

P(Yi = 0|yj , j 6= i) = 1− P(Yi = 1|yj , j 6= i).

I Si ,1 is the number of neighbors of i equal to 1 and Si ,0 is the
number of neighbors of i equal to 0; larger values of ψ place
more weight on matching.

I Since the full conditional distributions take on only two
values, there are no normalizing issues

I Bringing in covariates is natural on the log scale, i.e.,

log
P(Yi = 1|yj , j 6= i)

P(Yi = 0|yj , j 6= i)
= ψ(Si ,1 − Si ,0) + XT

i β.



Potts model

I The case where Yi can take on one of several categorical
values is a natural extension

I If we label the (say) L possible outcomes as simply 1, 2, ..., L,
then we can define the joint distribution for (Y1,Y2, ...,Yn) as
above, i.e.

p(y1, y2, ..., yn;ψ) ∝ exp(ψ
∑
i ,j

wij1(yi = yj))

with wij as above.

I This distribution is referred to as a Potts model

I Now the distribution takes on Ln values; now, calculation of
the normalizing constant is even more difficult.



Simultaneous autoregressive models (SAR)

I We can write the system of CAR model conditional
distributions as Y = BY + ε or equivalently as (I − B)Y = ε.

I The distribution for Y induces a distribution for ε. If [Y] is
proper, Y ∼ N(0, (I − B)−1D) so ε ∼ N(0,D(I − B)T )
Suppose we reverse this, specify a (normal) distribution for ε
to induce a distribution for Y. This is the SAR model

I Imitating usual autoregressive time series modeling, suppose
we take the εi to be independent innovations.

I For added generality, assume that ε ∼ N
(

0, D̃
)

where D̃ is

diagonal with
(
D̃
)
ii

= σ2i .

I Now Yi =
∑

j bijYj + εi , i = 1, 2, ..., n, with εi ∼ N
(
0, σ2i

)
I Equivalently, (I − B)Y = ε with ε distributed as above.

I If (I − B) is full rank,

Y ∼ N
(
0 , (I − B)−1D̃ ((I − B)−1)T

)
.



cont.

I A SAR model is customarily introduced in a regression
context, i.e., the residuals U = Y− Xβ are assumed to follow
a SAR model

I If U = BU + ε, we obtain

Y = BY + (I − B)Xβ + ε .

I Nice interpretation: a spatial weighting of neighbors and a
component that is a usual linear regression.

I SAR models are frequently employed in the spatial
econometrics literature.

I The SAR model does not introduce any spatial effects; the
errors are independent.

I Important point: SAR models are well suited to maximum
likelihood estimation but not for MCMC fitting of Bayesian
models



CAR versus SAR models

I Under propriety, the two specifications are equivalent if and
only if

(I − B)−1D = (I − B̃)−1D̃((I − B̃)−1)T ,

where we use the tilde to indicate matrices in the SAR model.

I So, any SAR model can be represented as a CAR model (since
D is diagonal, we can straightforwardly solve for B)

I The converse is not true (Cressie).


