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Univariate point-level modeling

I Basic Model:

Y (s) = xT (s)β + w(s) + ε(s)

The residual is partitioned into two pieces: one spatial, w(s),
and one non-spatial, ε(s). w(s) is a stationary Gaussian
process, introducing the partial sill (σ2) and range (φ)
parameters. ε(s) adds the nugget (τ2) effect.

I Interpretations attached to ε(s):

I pure error term; model is not perfectly spatial; τ 2, σ2 are
variance components;

I measurement error or replication variability causing
discontinuity in spatial surface Y (s);

I microscale uncertainty; distances smaller than the smallest
inter-location distance, indep assumed.



More

I Suppose we have data Y (si ), i = 1, . . . , n, and let
Y = (Y (s1), . . . ,Y (sn))T .

I Gaussian kriging models are special cases of of the general
linear model, with a particular specification of the dispersion
matrix

Σ = σ2H(φ) + τ2I .

I Hij = ρ(si − sj ;φ), where ρ is a valid (and typically isotropic)
correlation function.

I Setting θ = (β, σ2, τ2, φ)T (not a high dim problem), we
require a prior p(θ), so the posterior is:

p(θ|y) ∝ f (y|θ)p(θ)



Likelihood and priors

I The likelihood is given by:

Y|θ ∼ N(Xβ, σ2H(φ) + τ2I )

I Typically, independent priors are chosen for the parameters:

p(θ) = p(β)p(σ2)p(τ2)p(φ)

Useful candidates are red multivariate normal for β, and
inverse gamma for σ2 and τ2.

I Specification of p(φ) depends upon choice of ρ function; a
uniform or discrete prior is usually selected.



Priors cont.

I Informativeness: p(β) can be “flat” (improper)

I Without nugget, τ2, can’t identify both σ2 and φ (Zhang,
2004). With Matérn, can identify the product, σ2φ2ν .

I So an informative prior on at least one of these parameters

I With τ2, φ and at least one of σ2 and τ2 require informative
priors.

I If the prior on β, σ2, φ is of the form π(φ)
σ2

a+1
with π(·) proper,

then, improper posterior if a = 0

I Shows the problem with using IG (ε, ε) priors for σ2 -
a + 1 = 1 + ε, “nearly” improper. Safer is IG (a, b) with a ≥ 1



Hierarchical modeling

I Foregoing is really a hierarchical setup by considering a
conditional likelihood on the spatial random effects
w = (w(s1), . . . ,w(sn)).

I First stage:
Y|θ,w ∼ N(Xβ + w, τ2I )

The Y (si ) are conditionally independent given the w(si )’s.

I Second stage:

w|σ2, φ ∼ N(0, σ2H(φ))

I Third stage: priors on (β, τ2, σ2, φ)



Computing the posterior

I We seek the marginal posterior p(θ|y), which is the same
under the original and hierarchical settings

I Choice: Fit as f (y|θ)p(θ) or as f (y|θ,w)p(w|θ)p(θ).

I Fitting the marginal model is computationally more stable:
lower dimensional sampler (no w’s); σ2H(φ) + τ2I more
stable than σ2H(φ)

I BUT the conditional model allows conjugate full conditionals
for σ2, τ2 (inverse gamma), β, and w (Gaussian) – easy
updates!

I Marginalized model will need Metropolis updates for σ2, τ2,
and φ. But these usually work well and often converge faster
than the full Gibbs updates.



Where are the w’s?

I Interest often lies in the spatial surface w|y (pattern of spatial
adjustment)

I Have we lost the w’s with the marginalized sampling?

I No: They are easily recovered via composition sampling:

p(w|y) =

∫
p(w|θ, y)p(θ|y)dθ

I Note that

p(w|θ, y) ∝ f (y|w,β, τ2)p(w|σ2, φ)

is a multivariate normal distribution, resulting in easy
composition sampling, in fact 1-1 with posterior samples of θ



Spatial prediction (Bayesian kriging)

I Prediction of Y (s0) at a new site s0 with associated
covariates x0 ≡ x(s0).

I Predictive distribution:

p(y(s0)|y,X , x0) =

∫
p(y(s0),θ|y,X , x0)dθ

=

∫
p(y(s0)|y,θ,X , x0)p(θ|y,X )dθ

I p(y(s0)|y,θ,X , x0) is normal since p(y(s0), y|θ,X , x0) is!

I ⇒ easy Monte Carlo estimate using composition with Gibbs
draws θ(1), . . . ,θ(G): For each θ(g) drawn from p(θ|y,X ),
draw Y (s0)(g) from p(y(s0)|y,θ(g),X , x0).



Joint prediction

I Suppose we want to predict at a set of m sites, say
S0 = {s01, . . . , s0m}.

I We could individually predict each site “independently” using
method of the previous frame

I BUT joint prediction may be of interest, e.g., bivariate
predictive distributions to reveal pairwise dependence, to
reflect posterior associations in the realized surface:

I Form the unobserved vector Y0 = (Y(s01), . . . ,Y(s0m)), with
X0 as covariate matrix for S0, and compute

p(y0|y,X ,X0) =

∫
p(y0|y,θ,X ,X0)p(θ|y,X )

I Again, posterior sampling using composition sampling.



Spatial Generalized Linear Models

I Some data sets preclude Gaussian modeling; Y (s) need not be
continuous

I Example: Y (s) is a binary or count variable

I Presence/absence of a species at a location; abundance of a
species at a location

I precipitation or deposition was measurable or not
I number of insurance claims by residents of a single family

home at s
I Land use classification at a location (not ordinal)

I ⇒ replace Gaussian likelihood by an appropriate exponential
family member if possible

I See Diggle Tawn and Moyeed (1998)



Spatial GLM (cont’d)

I First stage: Y (si ) are conditionally independent given β and
w(si ) with f (y(si )|β,w(si ), γ) an appropriate non-Gaussian
likelihood such that

g(E (Y (si ))) = η(si ) = xT (si )β + w(si ) ,

where η is a canonical link function (such as a log or logit)
and γ is a dispersion parameter.

I Second stage: Model w(s) as a Gaussian process:

w ∼ N(0, σ2H(φ))

I Third stage: Priors and hyperpriors.

I Lose conjugacy between first and second stage; not sensible to
add a pure error term



Spatial GLM: comments

I Spatial random effects in the transformed mean with
continuous covariates encourages the means of spatial
variables at proximate locations to be close to each other

I Marginal spatial dependence is induced between, say, Y (s)
and Y (s′), but the observed Y (s) and Y (s′) need not be close
to each other. No smoothness in (s) surface

I Our second stage modeling is attractive for spatial explanation
in the mean

I First stage modeling is better for encouraging proximate
observations to be close.

I Note that this approach offers a valid joint distribution for the
Y (si ), but not a spatial process model; we need not achieve a
consistent stochastic process for the uncountable collection of
Y (s) values



Univariate areal data modeling

I In spatial epidemiology, interest in disease mapping, where we
have data

Yi = observed number of cases of disease in county i

Ei = expected number of cases of disease in county i

I Yi are random, but the Ei are thought of as fixed and known
functions of ni , e.g.,

Ei = ni r̄ ≡ ni

(∑
i yi∑
i ni

)
,

what we expect under a constant disease rate across i

I This process is called internal standardization since it centers
the disease rates, but uses the observed data to do so.



External standardization

I Internal standardization is “cheating” (or at least “empirical
Bayes”) in that we estimate the grand rate r from our current
data, but do not account for this

I Need observed counts to obtain expected counts (more below)

I Better approach: use an existing standard table of
age-adjusted rates for the disease.

I For example, after stratifying the population by age group, the
Ei emerge as

Ei =
∑
j

nij rj ,

where nij is the person-years at risk in area i for age group j ,
and rj is the disease rate in age group j (taken from the
standard table).

I This process is called external standardization



Traditional models and methods

I If Ei are not too large (disease is rare or regions i are small),
we often assume

Yi |ηi ∼ Po(Eiηi ) ,

where ηi is the true relative risk of disease in region i .

I The maximum likelihood estimate (MLE) of ηi is

η̂i ≡ SMRi =
Yi

Ei
,

the standardized morbidity (or mortality) ratio (SMR), i.e.,
the ratio of observed to expected disease cases (or deaths).



Traditional models and methods (cont’d)

I Note that Var(SMRi ) = Var(Yi )/E
2
i = ηi/Ei , and so we

might take V̂ar(SMRi ) = η̂i/Ei = Yi/E
2
i ...

I To find a confidence interval for ηi , easiest to assume that log
SMRi is roughly normally distributed. Using the delta method
(Taylor series expansion),

Var [log(SMRi )] ≈ 1

SMR2
i

Var(SMRi ) =
E 2
i

Y 2
i

× Yi

E 2
i

=
1

Yi
.

I An approximate 95% CI for log ηi is thus
log SMRi ± 1.96/

√
Yi , and so (transforming back) an

approximate 95% CI for ηi is(
SMRi exp(−1.96/

√
Yi ) , SMRi exp(1.96/

√
Yi )
)
.



Traditional models and methods (cont’d)

I Now suppose we wish to test whether the true relative risk in
county i is elevated or not, i.e.,

H0 : ηi = 1 versus HA : ηi > 1 .

I Under the null hypothesis, Yi ∼ Po(Ei ), so the p-value for
this test is

Pr(X ≥ Yi |Ei ) = 1− Pr(X < Yi |Ei ) = 1−
Yi−1∑
x=0

exp(−Ei )E
x
i

x!
.

I This is the (one-sided) p-value; if it is less than 0.05 the
traditional approach would reject H0, and conclude that there
is a statistically significant excess risk in county i .



Hierarchical Bayesian methods

I Now think of the true underlying relative risks ηi as random
effects, to allow “borrowing of strength” across regions

I Appropriate if we want to estimate and map the underlying
risk surface

I The random effects here can be high dimensional, and are
couched in a Poisson likelihood...
⇒ most naturally handled using hierarchical Bayesian
modeling!



Poisson-gamma model

I A standard hierarchical model is:

Yi | ηi
ind∼ Po(Eiηi ) , i = 1, . . . , I ,

and ηi
iid∼ G (a, b) ,

where G (a, b) denotes the gamma distribution with mean
µ = a/b and variance σ2 = a/b2 (this is the WinBUGS
parametrization of the gamma)

I Solving these two equations for a and b we get

a = µ2/σ2 and b = µ/σ2 .

I Setting µ = 1 (the “null” value) and σ2 = (0.5)2, panel (a) of
the next frame shows a sample of size 1000 from the resulting
(fairly vague) G (4, 4) prior...





Gamma prior and posterior

I Thanks to the conjugacy of the gamma prior with the Poisson
likelihood, the posterior distribution for ηi is again a gamma,
namely a G (yi + a,Ei + b)

I Point estimate of ηi : the posterior mean, E (ηi |y)=

E (ηi |yi ) =
yi + a

Ei + b
=

yi + µ2

σ2

Ei + µ
σ2

=
Ei

(
yi
Ei

)
Ei + µ

σ2

+

( µ
σ2

)
µ

Ei + µ
σ2

= wi SMRi + (1− wi )µ ,

where wi = Ei/[Ei + (µ/σ2)], so that 0 ≤ wi ≤ 1.

I Thus our point estimate is a weighted average of the
data-based SMR for region i and the prior mean µ.



Poisson-gamma data example

I Suppose in county i we observe yi = 27 disease cases, when
we expected only Ei = 21

I Under our G (4, 4) prior we obtain a
G (27 + 4, 21 + 4) = G (31, 25) posterior distribution;
panel (b) of the figure (two slides ago) shows a sample of size
1000 drawn from this distribution.

I This distribution has mean 31/25 = 1.24 (consistent with the
figure), indicating slightly elevated risk (24%).

I However, the posterior probability that the true risk is bigger
than 1 is P(ηi > 1|yi ) = .863



Poisson-gamma data example (cont’d)

I If we desired a 100× (1− α)% confidence interval for ηi , the
easiest approach would be to simply take the upper and lower
α/2-points of the G (31, 25) posterior.

I In our case, taking α = .05 we obtain this 95% equal-tail

credible interval as (η
(L)
i , η

(U)
i ) = (.842, 1.713), again

indicating no “significant” elevation in risk for this county.

I To summarize I (instead of 1) posterior distributions (one for
each county), we might use a choropleth map of the posterior
means or 95% CI interval widths



Poisson-lognormal (spatial) model

I The gamma prior is very convenient computationally, but fails
to allow for spatial correlation among the ηi

I Could contemplate a multivariate version of the gamma
distribution, but instead we place a multivariate normal
distribution on the ψi ≡ log ηi , the log relative risks.

I Specifically, we augment our basic model to

Yi | ψi
ind∼ Po

(
Ei e

ψi

)
,

where ψi = x′iβ + θi + φi using

I fixed effects β (for spatial covariates xi )

I heterogeneity random effects θi
iid∼ N(0 , 1/τh)

I spatial clustering random effects φ ∼ CAR(τc)



Comments

I Identifiability - θi + φi
I Impropriety in CAR requires an identifiability constraint, e.g.,∑

φi = 0

I Specifying prior on pure error variance, equivalently on the
precision τh, specifying prior on CAR ”variance”, equivalently,
on the precision τc

I Reparametrization - ”centering” to ψi = θi + φi and θi
I Perhaps just focus on the spatial story

I Other first stage specifications - general linear areal data
modeling



Back to internal standardization

I Again,much of the literature computes expected disease
counts via internal standardization.

I Again, this places the data on both sides of the model, i.e.,
the counts are on the left side but they are also used to obtain
the expected counts on the right side.

I So, these internally standardized models are incoherent and
not generative because one cannot obtain Ei before Yi ’s are
realized.

I Probabilistically, they could not produce the data we observe.



A different story

I Instead, adopt the direct generative model for disease counts.

I Model disease incidence instead of relative risks, using a
generalized logistic regression.

I Extract the relative risks post model fitting.



cont.

I Again, we observe disease counts Yi as well as a set of
region-specific covariates Xi .

I Let pi be the true incidence for region i and p̄ be the overall
disease rate across the entire study domain.

I The goal of disease mapping is to estimate the relative risk of
the disease, ri = pi/p̄, for each region.

I Usually we assume the number of individuals at risk in region
i , ni , is fixed and known

I Therefore, p̄ =
∑

i nipi∑
i ni

.

I For rare diseases, it is reasonable to use the Poisson
approximation to the binomial distribution.



cont.

I As above, the standard model in the literature:

Yi | ri ind
∼ Po(Ei ri ),

log(ri ) = X′iβ + φi .

I We propose a generative Poisson model for disease mapping
with a specification for pi rather than ri :

Yi | pi ind
∼ Po(nipi ),

F−1(pi ) = X′iβ + φi ,

where F (·) is a cdf (e.g., the logit from the logit link) and the
φi ’s, follow a CAR distribution.

I Same priors for the β and τ

I If we define r̃i = nipi/Ei with Ei as above, can recover r̃i ’s
from posterior samples of pi , post model fitting

I The ‘true” ri = pi
p̄ where, again, p̄ =

∑
i nipi∑
i ni

. So, posterior

samples of the pi will provide posterior samples of the ri



Comparison of geostatistical vs. areal modeling

I Comparing point-referenced and areal data models

I Process vs. n-dimensional distribution

I Gaussian process vs. CAR (Markov random field)

I Model ΣY vs. Σ−1
Y

I Prediction vs explanation

I Likelihood evaluation



Misalignment

I Problems with a single variable

I Let’s use the terminology ”points” and ”blocks”

I The variable is observed at some points but inference is
desired at other points - Kriging

I The variable is observed at the point level but inference is
desired at block levels

I ”Block” average, block kriging

Y (A) =
1

|A|

∫
A
y(s)ds

I Stochastic integral, Monte Carlo approximation

Ŷ (A) =
1

L

∑
l

y(sl)





Misalignment cont.

I The variable is observed at block level with inference desired
at other blocks

I Modified areal unit problem (MAUP)

I Alternatives to ”areal allocation”

I The variable is observed at block level but inference is sought
at point level

I Does this make sense? e.g., average rainfall for A vs. number
of cases in A





Misalignment cont.

I Problems with several variables; interest in regression

I X at point level, Y at other points

I X at point level, Y at block level

I X at block level, Y at point level

I X at block level, Y at block level

I Bring X’s to the scale of the Y’s

I With more than two variables, bring all the variables to a
common scale. Highest resolution is obviously preferred.



The ecological fallacy

I Suppose for a set of regions Ai , i = 1, ..., I partitioning A we
have the population at risk, Ni , and observe the counts of
cases Yi .

I For simplicity, assume a univariate exposure surface denoted
by X (s) at location s in A.

I Within A, the exposure data X (sk) are available from a set of
monitoring stations at locations sk , k = 1, ...,K .

I A naive disease mapping model:

Yi
ind
∼ Poisson(Nipi ),

logit(pi ) = β∗0 + β∗1X̄i ,

where pi is the disease incidence for region Ai , and X̄i is the
mean exposure within Ai .



cont.

I The exposure data are only observable at sparsely located
monitoring stations but to obtain an average exposure for an
Ai , we need a model for the entire exposure surface.

I A geostatistical approach specifies a model for the exposure
surface X (s) for s ∈ A employing say, a stationary Gaussian
process.

I Then, the block average

X̄i =

∫
Ai

X (s)fi (s)ds,

is formed, where fi (s) is the population density at location s in
region Ai , i.e.,

∫
Ai
fi (s)ds = 1.



The ecological fallacy
I Leads to the ecological fallacy, an ecological bias arising from

assumption that associations at the block level are the same
as those for individuals within the blocks.

I To illustrate, let Yij denote a Bernoulli disease indicator for
individual j in region Ai with individual level model

Yij
ind
∼ Bernoulli(pij),

log(pij) = β0 + β1Xij .

Letting Yi =
∑Ni

j=1 Yij , we have

E(Yi ) = Niqi , with qi =
1

Ni

Ni∑
j=1

exp(β0 + β1Xij).

I qi is the average disease incidence of individuals in region Ai .
Clearly, qi 6= pi in the above

I So, β1 6= β∗1 . Bias arises by summation of nonlinear (log)
terms. Mean of the logs is NOT equal to the log of the mean.
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