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Bayesian Nonparametric Modeling for Spatial Data using
Dirichlet Processes

I What are we doing here?

I The Dirichlet Process (DP)

I The Spatial Dirichlet process (SDP) and SDPK

I Comparison between Gaussian Process (GP) and SDP

I The GSDP

I The GSDPK

I Comparison between SDP, GSDP, and GSDPK



Recall

I Here, point-referenced spatial data

I Often a temporal component (here, replicates)

I Spatial process specification is assumed, usually in the form of
spatial random effects

I Typically a Gaussian process which is often assumed stationary



Nonstationarity

I Kernel convolution (Higdon et al); Paciorek and Schervish
extension

I But still Gaussian

I “Nonparametric” modeling for a random spatial surface, e.g.,
nonparametric regression literature - mean modelling

I Nonparametric variogram approaches - inadequate

I “Deformation” approach - Sampson and Guttorp, Damian et
al, Schmidt and O’Hagan

I =⇒ nonparametric specification of the covariance function
but still using a Gaussian process



Bayesian nonparametrics

I Again, not nonparametric modelling of the mean

I Probability models for a random distribution

I Extend to a probability model for a stochastic process of
random variables

I Our approach is through the use of Dirichlet processes

I Again, modeling of random effects

I Requires replications in some way

I Other approaches e.g., Gamma processes or, more generally,
kernel mixtures of Gamma processes



Again, the basic spatial data model

Suppose our observations come from a random field Y (s), s ∈ D,
D ∈ Rd , such that

Y (s) = µ(s) + θ(s) + ε(s),

µ(s) regression term (X (s)Tβ)
(perhaps a trend surface)

θ(s) spatial random effect
ε(s) pure error (noise) term

ε(s) ∼ N(0, τ2)



Customary modeling for θ(s)

I Gaussian process model specification

I Valid covariance function for θ(s)

I Stationary covariance function, C (s − s ′;φ)

I Perhaps mixture of Gaussians, perhaps a t-process, or
Gaussian/logGaussian process





Dirichlet Processes

I A growing literature on the use of nonparametric priors,
particularly Dirichlet process (DP) priors.

I The Sethuraman representation:
Let θ∗1, θ

∗
2, . . . be i.i.d. ∼ G0.

I Let q1, q2, . . . be indep of θ∗’s and i.i.d. ∼ Beta(1, α).

I G0 can be a distribution over random objects such as vectors,
a stochastic process of random variables, or even distributions.

I If p1 = q1, p2 = q2 (1− q1), . . ., pk = qk
∏k−1

j=1 (1− qj), . . .
then

G (·) =
∞∑
k=1

pk δθ∗k (·) ,

is said to be distributed according to a DP.



cont.

I The distribution of pT = (p1, p2, . . . , ) is usually referred as a
”stick-breaking” construction

I Many one dimensional stick-breaking distributions discussed in
the literature (Hjort, Ishwaran and colleagues, Pitman)



cont.

I More generally, consider:

GK (·) =
K∑

k=1

pk δθ∗k (·),

K is an integer (possibly random, allowed to be infinite), θ∗k
are i.i.d. from some G0 (possibly atomic), pk distributed on
the simplex {p :

∑K
i=1 pk = 1, pk ≥ 0, k = 1, . . . ,K}.

I In all of these the stick-breaking is “one-dimensional”; the
probability pk is for the selection of the entire θ∗k .

I We generalize to multi-dimensional stick-breaking
specifications below



Finite dimensional versions

I Finite Dimensional Dirichlet Priors - if K is finite, and
(p1, . . . , pK ) ∼ Dir(α1,K , . . . , αK ,K ), again with atoms from
G0, then GK ∼ DPK (α,G0).

I Result (Ishwaran et al): Let GK ∼ DPK (α,G0) and
EGk

(h(x)) =
∫
h(x)GK (dx) denote a random functional of

GK , where h is non-negative continuous with compact
support. Then:

I If αk,K = λK , where K λK →∞, then

EGk
(h(x))

p→ EG0(h(x)),i.e., a limiting parametric model.

I If
∑K

k=1 αk,K → α > 0 and maxα1,K , . . . , αK ,K → 0 as

K →∞, EGk
(h(x))

D→ EG (h(x)), where G ∼ DP(αG0).



Bringing in space; the SDP and SDPK

I A different nonparametric spatial modeling approach using the
Dirichlet process (DP).

I According to the atoms, DPs provide random univariate (and
multivariate) distributions.

I A random “distribution” for a stochastic process of random
variables.

I Specified through arbitrary finite dim distributions.

I Resulting process is nonstationary, resulting joint distributions
are not normal.

I For n = 1 we have {F (Y (s)) : s ∈ D}. Want the F (Y (s)) to
be dependent and, as s → s0, we want the realized F (Y (s))
to converge to the realized F (Y (s0)). Spatial
prediction/kriging for distributions!



cont.

I Extend θl to θl ,D = {θl(s) : s ∈ D}. For instance, G0 might
be a stationary GP with each θl ,D being a realization from G0,
i.e., a surface over D.

I The resulting random distribution, G , for θD is called a spatial
DP (SDP), denoted by

∑∞
l=1 ωlδθ∗l,D .

I Interpretation: G induces a random probability measure
G (s(n)) on the space of distribution functions for the set
(θ(s1), ..., θ(sn)).



cont.

I Given G , E(θ(s) | G ) =
∑
ωlθ
∗
l (s) and Var(θ(s) | G ) =∑

ωlθ
∗2
l (s)− {

∑
ωlθ
∗
l (s)}2.

For a pair of sites si and sj ,

Cov(θ(si ), θ(sj) | G ) =∑
ωlθ
∗
l (si )θ

∗
l (sj)−

{∑
ωlθ
∗
l (si )

}{∑
ωlθ
∗
l (sj)

}
.

I Use DP mixing to overcome the a.s. discreteness of G

I That is, θD given G is a realization from G and YD − θD is a
realization from a pure error process.



DP mixing

I Then, formally a convolution,

F
(
YD | G , τ2

)
=

∫
K
(
YD − θD | τ2

)
G (dθD) .

I Differentiating to densities,

f
(
YD | G , τ2

)
=

∫
k
(
YD − θD | τ2

)
G (dθD) .

I So, Y (s) = θ(s) + ε(s) where θ(s) follows a spatial SDP and
ε(s) is N(0, τ2), a pure error (nugget) component

I Apart from mean, usual partitioning of residual

I Convolving distributions rather than convolving process
variables to create a process.

I Replacing countable sums with finite sums and a Dirichlet
distribution for the weights yields the SDPK



Finite dimensional joint distributions

I Joint density of Y = (Y (s1), ...,Y (sn))′ given τ2 and G (n),

where G (n) ∼ DP(νG
(n)
0 ), is

f
(
Y | G (n), τ2

)
=

∫
Nn

(
Y | θ, τ2In

)
G (n) (dθ)

.

I Again, the a.s. representation of G (n) yields that
f (Y | G (n), τ2) is a.s. of the form

∑∞
l=1 ωlNn(Y | θ∗l , τ2In),

i.e., a countable location mixture of normals.

I Usually add a regression term X ′β, to the kernel of the
mixture model.



The hierarchical model

I The following semiparametric hierarchical model emerges

Yt | θt ,β, τ2
ind .∼ Nn(Yt | X ′tβ + θt , τ

2In)

θt | G (n) i .i .d .∼ G (n), t = 1, ...,T

G (n) | ν, σ2, φ ∼ DP(νG
(n)
0 )

β, τ2 ∼ Np(β | β0,Σβ)IG(τ2 | aτ , bτ )
ν, σ2, φ ∼ G(ν | aν , bν)IG(σ2 | aσ, bσ)[φ]

I G
(n)
0 (· | σ2, φ) = Nn(· | 0n, σ

2Hn(φ))

I Model fitting is standard using “marginalization over G” for
DP models.



Comparing the GP with the SDP and SDPK

I Compare the behavior of the GP, the SDP and the SDPK

using data collected at 45 weather stations in Colorado

I Average monthly temperatures and precipitation data
throughout 40 years (1958-1997) from NCAR.

I Use average monthly temperature for July to achieve
approximate independence.

I Embedding within a dynamic model could also be done.





Model details

I 40 replications over 45 locations so SDP and the SDPK can
be fitted.

I Yt(s) is the average temperature and µt(s) = β0 + βT1 Xt(s),
with Xt(s) associated precipitation.

I Exponential correlation function for base process/multivariate
normal distribution, ρ(s − s ′) = σ2 exp{−φ ||s − s ′||}.

I To facilitate comparison with the SDPK we fix α = 10 (trials
with random α in the SDP didn’t change the results
significantly).

I K = 10 and αk,K = α/K implies in the SDPK that the pk ∼
uniform Dirichlet.



Comparison

I We consider the model for θt(s) + εt(s), t = 1, 2, ...,T

I The two extreme cases: α→∞ (where the θt(s) are all
distinct) and α→ 0 (where θt(s) = θ(s)).

I From this perspective, the SDP (and the SDPK ) is in between
since it permits α ∈ (0,∞).

I θt(s) + εt(s) has dependence within a replication but indep
across replications (“known” mixing dist.)

I θ(s) + εt(s) has dependence both within and across
replications

I The simple GP (α→ 0) is unable to capture the variability of
multimodal data. PMSE for GP is ≈ 1600 while for SDP and
SDPK PMSE is ≈ 950.

I If number of components is small relative to K , not much
difference between the SDPK and SDP.







Generalized SDP

I Motivation - Clustering using the DP is attractive, perhaps
more elegant than finite mixture models, e.g., in species
sampling, a mechanism that enables new species types (new
classes, in general)

I But still DP can be inefficient. Suppose species are defined
through a vector of traits and a new species is a hybrid. It
would be efficient to allow different components of the vector
to be drawn from different components of the θ∗k ’s

I Fewer clusters would be needed, a simpler story for speciation
results



GSDP cont.

I In fact, our goal is a bit more ambitious.

I Local surface selection among the process realizations that
define the SDP or SDPk .

I Need to provide such selection for any number of and choice
of locations.

I With spatial structure to such selection. The closer two
locations are the more likely they are to select the same
surface

I An example: in brain imaging (neurological activity level) -
healthy brain images (surfaces) as well as impaired brain
images (surfaces)

I Only a portion of the brain is impaired suggests surface
selection according to where the brain is damaged.



Some details

I A base random field G0, say, stationary and Gaussian, with
θ∗l ,D = {θ∗l (s), s ∈ D} a realization from G0.

I A random probability measure G on the space of surfaces over
D whose finite dimensional distributions have a.s. the
following representation: (K can be ∞)

pr{θ(s1) ∈ A1, . . . , θ(sn) ∈ An}

=
K∑

i1=1

...

K∑
in=1

pi1,...,in δθ∗i1 (s1)
(A1) . . . δθ∗in (sn)

(An)



cont.

I The θ∗j ’s are independent and identically distributed as G
(n)
0

and independent of the weights {pi1,...,in}
I ij denotes i(sj), j = 1, 2, . . . , n, and the {pi1,...,in} are

distributed on the simplex
P = {pi1,...,in ≥ 0 :

∑K
i1=1 ...

∑K
in=1 pii ,...,in = 1}

I The collection of probabilities is really a process (s’s
suppressed). Require a continuity property (essentially,
Kolmogorov consistency of the finite dimensional laws); for s1
and s2, as s1 → s2,
pi1,i2 = pr{θ(s1) = θ∗i1(s1), θ(s2) = θ∗i2(s2)}, tends to the
marginal probability pi2 = pr{θ(s2) = θ∗i2(s2)} when i1 = i2,
and to 0 otherwise.

I Extension to n locations is clear; this property is interpreted as
almost sure continuity of the weights



Digression

I The dependent Dirichlet process (DDP) in the spatial setting
specifies the random distribution of θ(s) as Fs , yielding a
collection of random distributions indexed by location

I What about the joint distribution of say θ(s1), θ(s2)? Suppose
pr(θ(s1) = θ∗l (s1), θ(s2) = θ∗l ′(s2)) = pl(s1)pl ′(s2)

I Conditional independence given Fs1 and Fs2
I |Fs1(·)− Fs2(·)| → 0 as ||s1 − s2|| → 0. Distributions become

close but not realizations from the distributions

I We are constructing joint distributions, i.e.,
pr(θ(s1) = θ∗l (s1), θ(s2) = θ∗l ′(s2)) = pl ,l ′(s1, s2)



Labels

I So, we are assigning local “labels”

I We can imagine a label L(s) at every s ∈ D

I We need to build a labeling process

I Again, the SDP and SDPK provide a constant label across all
locations

I To build a labeling process we need to specify finite
dimensional distibutions, again
P(L(s1 = l1, L(s2) = l2, ..., L(sn) = ln)

I Can build in several ways (below); will call this a generalized
spatial Dirichlet process (GSDP)

I A simple idea is a partition process. Partition D into say m
regions and assign a common label to all s in the same region

I If we restrict the number of atoms to K , hence, the number
of labels to K , call it a GSDPK



Properties

I Can calculate moments, as with SDP

I With almost surely continuous realizations from the base
process and also of the weights, weak conv of θ(s) to θ(s0)
and the GSDP is mean square cont.

I As with the SDP, the process θ(s) has heterogenous variance
and is nonstationary.

I If we marginalize over G with G0 a GP(0, σ2ρφ(si − sj)),

cov{θ(si ), θ(sj)} = σ2ρφ(si − sj)
K∑
l=1

E{pll(si , sj)}.

I
∑K

l=1 E{pll(si , sj)} < 1, unless pll ′(si , sj) = 0, l 6= l ′,



GSDP through a latent spatial process

I Latent variable process determines surface selection.

I Employ Gausssian thresholding to provide binary outcomes,
i.e., assume that {Zl(s), s ∈ D, l = 1, 2, . . .} are indep
GP(µl(s), ρZ (·, η))

I Then ql ,u1,...,un(s1, . . . , sn) =

pr{δ∗{Zl (s1)≥0} = u1, . . . , δ
∗
{Zl (sn)≥0} = un|µl(s1), . . . , µl(sn)}

I At any location s we obtain

ql ,1(s) = pr{Zl(s) ≥ 0} = 1− Φ {−µl(s)} = Φ {µl(s)} ,

I If the µl(s) such that Φ{µl(s)} are indep Beta(1, ν), then for
each s, θ(s) is a DP, probabilities vary with location.



Comparing the SDP’s and GSDP’s
I Compare using a simulated data set

I Data are generated from a finite mixture model of GPs.
Let Yt = (Yt(s1), . . . ,Yt(sn))T

I Yt(s) arises from a mixture of two GPs, G 1
0 (ξ1, σ

2
1ρψ1) and

G 2
0 (ξ2, σ

2
2ρψ2) such that

Yt(s) ∼ α(s)G 1
0 + (1− α(s))G 2

0 .

I Marginal weights α(s) = P(Z (s) > 0), where Z (s) is a mean
zero stationary GP with cov function ρη(s − s ′).

I The joint distribution for s, s ′ in D is

(Yt(s),Yt(s
′)) ∼α1,1(s, s ′)G 1

0,s,s′ + α2,2(s, s ′)G 2
0,s,s′+

+ α1,2(s, s ′)G 1
0,s G

2
0,s′ + α2,1(s, s ′)G 2

0,s G
1
0,s′

where αi ,j = P
(
(−1)i+1 Z (s) > 0, (−1)j+1 Z (s ′) > 0

)
,

i , j = 1, 2.



Specifications

I n = 50 and T = 40.

I Also, ξ1 = −ξ2 = 3, σ1 = 2σ2 = 2, φ1 = φ2 = 0.3, and
η = 0.3.

I We fit the SDP model, the GSDP and the GSDPK with
K = 20.

I To focus on the modeling of the spatial association, we
assume µ(s) = 0











Ongoing work

I Time dependent replications - embed the GSDP’s within a
dynamic model

I Multivariate spatial data has not been addressed.
Coregionalization (random linear transformation) approach.
Random transformation introduced into the base measure or
random linear transformation of SDP realizations

I Functional data analysis (FDA). Replace geographic space
s ∈ D with covariate space z ∈ Z . Atoms in DP are random
functions.

I Multivariate FDA, e.g., an ensemble of functional data for a
patient over time

I Finally, spatial FDA. Use DP specifications to handle both
functional and spatial aspects of the modelling.




