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What is a point pattern?

I For a specified, bounded region D, a set of locations
si , i = 1, 2..., n

I The locations are viewed as “random”

I Need not have variables at locations, just the pattern of points

I Crude features of patterns, e.g., complete randomness,
clustering/attraction, inhibition/repulsion, regular/systematic

I Can add “marks”, i.e., labels. Then, a point pattern for each
mark; comparison of patterns











Examples

I In looking at ecological processes, interest in the pattern of
occurrences of species, e.g., the pattern of trees in a forest,
say junipers and pinions.

I In spatial epidemiology, we seek to find pattern in disease
cases, perhaps different patterns for cases vs. controls; breast
cancer cases: treatment option - mastectomy or radiation

I In syndromic surveillance we seek to identify disease
outbreaks, looking for clustering of cases, over time.

I Evolution/growth of a city, i.e., urban development, pattern of
development of single family homes or of commercial property
over time.



The key players (my view)

I Adrian Baddeley - impressive theoretical contributions;
recently, more applied effort - likelihood methods, exploratory
tools, residual analysis, spatstat package

I Peter Diggle - ahead of his time; lovely early theory; broad
spatial interests, always a strong practical bent, accessible
(classic) books and useful website

I Jesper Møller - outstanding theoretician; rich classes of
models and model fitting; simulation and fitting algorithms for
Markov and Cox processes; a book

I Recent book of Illian, Pentinen, Stoyan, and Stoyan - a broad,
richly exemplified, accessible volume

I Handbook of Spatial Statistics (Gelfand et al., 2010);
Hierarchical Modeling and Analysis for Spatial Data, 2nd
Edition (Banerjee et al., 2014)



The contribution

I At the heart is modeling and distribution theory for spatial
point patterns

I Given model fitting, focus on inference within a Bayesian
framework

I From an inferential perspective, spatial point pattern work is
least developed and even more the case within the Bayesian
framework

I Use simulation as the tool, enables full inference, with
uncertainty

I Ideas for residual analysis, model adequacy, model comparison

I Lots of preliminaries



The basics

I Point patterns consider the randomness associated with the
locations of the points.

I “No spatial pattern?” A uniform distribution of points?
Complete spatial randomness (CSR)?

I For a bounded region D, denote the realization as
si , i = 1, 2..., n with both n and the si random.

I Are we seeing a finite realization of an infinite point pattern as
a result of imposing D (edge effects and the shape of D might
matter)?

I Are we seeing a finite point pattern associated with a specified
D (e.g., an island, a forest, a city)?

I Modeling depends upon setting. Second case better suited to
application, more flexible modeling



cont.

I Need not have variables at locations, just the pattern of
points provided by the locations.

I Crude features of the patterns. CSR is a place to start, hope
to criticize. Why? In applications, it would not be operating.

I We seek to shed light on where there is departure from
randomness and what its nature might be.

I Departure can result from environmental features, regression
models to explain pattern we observe

I Instead, clustering or attraction, possibly inhibition or
repulsion, perhaps regular or systematic behavior which we
seek to explain.



Modeling

I We focus on point patterns over D ⊂ R2

I We consider a bounded, connected subset D. We denote a
random realization of a point pattern by S with elements
s1, ..., sn.

I S is random and so are any features calculated from it.

I A probabilistic model for S ∈ D must place a distribution over
all possible realizations in D.

I In practice, often easier to examine features/functionals of
this distribution than to specify the distribution.

I Generative specification: (i) distribution over {0, 1, 2, ...} to
provide number of points then, (ii) distribution to jointly
locate these points over D.



More explicitly:

I Two ingredients to specify a generative probabilistic model for
S

I Distribution for N(D), the number of points in D, a
distribution over the set n ∈ {0, 1, ..,∞}.

I A multivariate location density over Dn, for any n, say
f (s1, s2, ..., sn). Since points are unordered/unlabeled, f must
be symmetric in its arguments.

I With ∂s denoting a small circular neighborhood around s,
P(N(∂s1) = 1,N(∂s2) = 1, ...,N(∂sn) = 1) ≈
f (s1, s2, ..., sn)Πi |∂si |, with |∂s| the area of ∂s.

I We need to specify f consistently over all S.

I Joint dist has marginal-conditional form
P(N(D) = n)n!f (s1, s2, ..., sn).



Stationarity

I A stationary point pattern model:
f (s1, s2, ..., sn) = f (s1 + h, s2 + h, . . . , sn + h) for all n, si , and
h.

I This condition would naturally be proposed over R2 and
applied, suitably, over D.

I Stationarity is a model property, not a model specification.

I Will return to below



Counting measure

I Analogous to N(D), introduce count variables, N(B), i.e.,
N(B) =

∑
si∈S 1(si ∈ B).

I N(B) is computed by looking at the points in S individually, a
first order property.

I Pairs of points, a second order property (below)

I Random counting measure over a σ-algebra through finite
dimensional distributions, i.e., the joint distribution for a finite
collection of count variables.

I A realization of a point pattern is equivalent to a realization
of a counting measure (void sets).



Poisson process

I Recall Poisson process over a set D, intensity λ(s).
N(B) ∼ Po(λ(B)) where λ(B) =

∫
B λ(s)ds.

I In addition, if B1 and B2 are disjoint, then N(B1) and N(B2)
are independent

I The random Poisson measure induced by λ(s):

lim∂s→0
N(∂s)
|∂s| = N(s) or equivalently, N(B) =

∫
B N(s)ds

I Independence of disjoint sets implies
f (s1, s2, ..., sn) = Πi f (si ) = Πiλ(si )/λ(D) where
λ(D) =

∫
D λ(s)ds.

I P(N(∂s) = 1) ≈ E (N(∂s)) = λ(∂s) ≈ λ(s)|∂s| ≡ λ(s)ds.



Moment measures

I First order properties, i.e., the first moment measure,
{E (N(B)) : B ∈ B}. Given λ(s), we can compute
E (N(B)) =

∫
B λ(s)ds.

I However, given that the collection, {E (N(B)) : B ∈ B}, is a
measure, we can extract the first-order intensity:
λ(s) = lim|∂s|→0

E(N(∂s))
|∂s| .

I If f (s1, ..., sn) = Πi f (si ), then λ(s) = f (s)λ(D).



Second order properties

I For second-order properties, consider
γ(B1 × B2) ≡ ES

∑
s,s′∈S 1(s ∈ B1, s′ ∈ B2). Define γ(s, s′),

second order intensity through
γ(B1 × B2) =

∫
B1

∫
B2
γ(s, s′)ds′ds.

I So, if B1,B2 disjoint,
ES(N(B1)N(B2)) =

∫
B1

∫
B2
γ(s, s′)ds′ds.

I Hence, wwith sufficiently small sets,

γ(s, s′) = lim|∂s|→0,|∂s′|→0
E(N(∂s)N(∂s′))
|∂s||∂s′| .

I The pair correlation function, γ(s, s′)/λ(s)λ(s′). When
λ(s) = λ simplifies to γ(s, s′)/λ2 and, in fact, equals 1 under
CSR. > 1 implies attraction, < 1 implies repulsion.

I Under stationarity, γ(s, s′) = γ(s− s′). Isotropic means
γ(s, s′) = γ(||s− s′||).



Papangelou conditional intensity
I Consider λ(s|S) for a given location s and a given realization

S?

I λ(∂s)|S) ≈ λ(s|S)ds is interpreted as the conditional
probability that there is a point of the process in ∂s and the
rest of the process coincides with S.

I Roughly, λ(∂s|S) is the probability that there is a point of S
in ∂s and the rest of S lies outside of ∂s.

I λ(s|S) = λ(s|S/s), s ∈ S; = λ(s|S), s not ∈ S

I λ(s|S) is random since S is and ES(λ(s|S)) = λ(s).

I λ(s|S) = f (s,S)
f (S) where f (S) is the density of the spatial point

process (with respect to an HPP(1))

I f (S) is not fixed dimension; usually specified up to
normalizing constant which cancels from ratio for λ(s|S)

I For conditionally independent locations λ(s|S) = λ(s).



Homogeneous Poisson Process (HPP)

I CSR: λ(s) = λ (HPP), λ(B) = λ|B|
I Stationarity implies that λ(s) = λ for all s and thus,
λ(B) = λ|B| for all B ⊆ D.

I f (s1, s2, ..., sn) = 1/|D|n.

I The HPP is only one stationary process specification. It
specifies a constant intensity with conditionally independent
locations.

I More general models include interactions between points, e.g.,
the stationary Gibbs processes.

I Can be a null model for certain types of data, e.g., physical
processes in a homogeneous environment, for example,
interacting particle models.



Exploratory tools, the G function

I Again, complete spatial randomness (CSR) ≡ HPP(λ). Want
to criticize CSR

I Distance based approaches; G , F , and K functions

I G (d), the “nearest neighbor” distribution, i.e., the c.d.f. of
the nearest neighbor distance, event to event.

I G (d) = Pr(nearest event ≤ d).

I F (d) is the “empty space” distribution, i.e., for an arbitrary
location, the c.d.f. of the nearest neighbor distance, point to
event

I F (d) = Pr(nearest event ≤ d).

I Under CSR, G (d) = F (d) = 1− exp(−λπd2).

I G places a lot of mass on small distances. We expect to see
some clustering under CSR.



cont.

I Empirical c.d.f., Ĝ (d), arises from the n nearest neighbor
distances (for s1, for s2, etc.). Denote this set by
{d1, d2, ..., dn}.

I With bounded D, we will need an edge correction, e.g., if, for
si , d > bi , where bi is the distance from si to edge of D.

I Ĝ (d) =
∑

i I (di≤d<bi )∑
i I (d<bi )

I So, if d > bi , then the event {di < d} is not observed.

I Comparison of Ĝ with G under CSR is usually through a
theoretical Q-Q plot.

I Shorter tails suggest clustering/attraction; longer tails suggest
inhibition/repulsion.



The K function

I The K function considers the expected number of points
within distance d of an arbitrary point.

I Under stationarity, this expectation is the same for any point.

I K (d) = (λ)−1E(# of points within d of an arbitrary point)
The scaling by 1/λ, along with stationarity, scales K (d) to be
free of λ.

I For example, under CSR, K (d) = λπd2/λ = πd2, i.e., the
area of a circle of radius d .



cont.

I K̂ (d) = (λ̂)−1
∑

i

∑
j 6=i 1(dij ≡ ||si − sj || ≤ d)/n

= (nλ̂)−1
∑

i ri where λ̂ = n/|D| and ri is number of sj within
d of si

I Edge correction, wij for si too near boundary of D.

I wij is the conditional probability that an event is in D given
that it is exactly distance dij from si

I Approximated as the proportion of the circumference of a
circle centered at si with radius ‖si − sj‖ that lies within D.

I In fact, for a stationary process, can define
K (d) =

∫
||u||≤d g(u)du, with g the pair correlation function

I As a result, the second moment measure γ(d) = λ2K ′(d)
2πd .

I Suggests the possibility of γ̂(d).



Finite point pattern models (restriction to D)

I Nonhomogeneous Poisson process (NHPP) - λ(s),
conditionally independent locations with location density,
f (s) = λ(s)/λ(D)

I Scaling form: λ(s; θ) = λf (s; θ), f a bivariate density function
truncated to D.

I Sufficiently rich choices for f ? Mixture models, e.g.,
f (s) =

∑K
k=1 pk fk (s). But fitting challenges.

I Nonnegativity challenges for trend surfaces.

I Most common: log λ(s) = XT (s)γ; spatial covariates drive
the point pattern

I Need to calculate
∫

D eXT (s)γds to obtain the likelihood.
X(s)? Discrete approximation, ecological fallacy, tiled surface.
But, without finer covariate resolution, can’t do better.



Log Gaussian Cox process (LGCP)

I A particular Cox process; we write λ(s) = g(X(s)Tγ)λ0(s)

I Require g(·) ≥ 0 and think of λ0(s) as the error process, a
realization of a positive stochastic process

I Natural center is mean 1

I Conditional on {λ0(s), s ∈ D} (and γ), we have a NHPP

I Log Gaussian Cox process (LGCP) iff λ(s) = exp(Z (s)), Z (s)
from a spatial Gaussian process with mean say XT (s)γ and
covariance function σ2ρ(·)

I Two stage process: [S|λ(s)][λ(s)]



The likelihood

I For an NHPP or a LGCP, what is the likelihood?

I As a function of λ(s), L({λ(s), s ∈ D}; Sobs) = e−λ(D)Πiλ(si )

I A function of an entire surface. For NHPP, a parametric
function, for LGCP, a process realization

I So, λ(D) =
∫

D λ(s)ds is a regular or a stochastic integral.

I Discrete approximation for
∫

D eXT (s)γ+Z(s)ds using
representative points

I Challenges: For NHPP, ecological fallacy, for LGCP,
convergence



More general Cox processes

I Neyman Scott process, Matérn process, Thomas process; shot
noise, e.g., Poisson Gamma process

I Suppose we generate parent events from a NHPP with λ(s)
say K , and their locations say µk , k = 1, 2, ...,K .

I Next, suppose each parent produces a random (but i.i.d.)
number of offspring, Nk , where the Nk are i.i.d. according say,
g = Po(δ).

I Next, locate the offspring relative to the parent.

I For kth parent, locate offspring according to i.i.d. draws from
a bivariate density, f (s;µk ).

I Only the offspring are retained to yield the point pattern.



cont.

I If bivariate density is N(µk , σ
2I ), a (modified) Thomas

process

I Compound Poisson process: degenerate offspring density at
µk . Count at µk is a ‘mark’ at that location.

I The Matérn process: offspring at µk uniform in a circle of
radius R (a parameter) around µk

I More generally, combine the steps of generating the number
of children and their locations. That is, generate N i.i.d ∼ gK

and generate s1, s2, ..., sN i.i.d ∼
∑K

k=1
1
K f (s;µk ,Σ)

I For example, with above, say, gK = Po(Kλ).



Shot noise processes

I A Cox process that is also conditionally a NHPP; an
alternative to a LGCP.

I Again, λ(s) = eX T (s)βλ0(s)

I Now, λ0(s) is a mean 1 shot noise process so that λ(s) is
centered around the deterministic component.

I Usual form: λ0(s) =
∑

si∈S f (s− si )m(si ), with S drawn from
a HPP(λ) and m(si ) a constant, m

I f is a density over D and m(si ) ≥ 0.

I m(si ) perhaps m (or from a regression on say X (s) over D or
a process realization over D)

I m(si ) denotes contribution to λ0(s) from si and λ0(s)
accumulates the “shots” arising from S



Poisson-Gamma process

I Poisson Gamma process is an example of a shot noise process.
Allows both over and under-dispersion relative to an HPP.

I General gamma process provides a random positive spatial
surface, i.e., Γ(du) ∼ Ga(α(du), β−1) (i.e.,

∫
A Γ(du) = Γ(A))

I We kernel mix to obtain the random intensity
λ(∂s) ≈ λ(s|∂s| =

∫
D f (s− u)Γ(du)|∂s|

I We draw a realization of an HPP over D to obtain
S∗ = {s∗j , j = 1, 2, ...,m}

I We simplify the intensity by discretizing D to S∗ yielding
λ(s) =

∑
s∗j ∈S∗ f (s− s∗j )w(s∗j ), w(s∗j ) a Gamma variable.



Markov, Gibbs processes

I Markov processes, for us Gibbs processes. Examples here:
Strauss process, hardcore process

I A finite Gibbs process if location density is
f (S) = exp(−Q(S)) with regard to an HPP with unit intensity

I Q(s1, s2, ..., sn) =
c0 +

∑n
i=1 h1(si ) +

∑
i 6=j h2(si , sj ) + ...+ hn(s1, s2, ..., sn)

I h’s have parameters, c0 is a normalizing constant over ×Dn, a
function of the parameters in the h’s

I c0 is almost always intractable, making E (N(D)) intractable



cont.

I The h’s are potentials of order 1, 2,...n, respectively, each
symmetric in its arguments.

I With potentials only of order 1, NHPP with λ(s) = e−h1(s).

I Higher order potentials capture/control interaction.

I Pairwise interactions: only include h1 and h2. To guarantee
integrability, we must take h2 ≥ 0.

I This implies we can only capture inhibition.

I If h1(s) is constant, homogeneous Gibbs process.



cont.

I Most common form for h2 is φ(||s− s′||), e.g., ||s− s′||2/τ2

I Papangelou conditional intensity has a simple form in this
case, λ(s|S) = exp(−(h1(s) +

∑n
i=1 φ(‖s− si‖))).

I Unknown normalizing constant cancels from the conditional
intensity

I Examples through φ(d), d is an interpoint distance.

I Strauss process sets φ(d) = β, d ≤ d0,= 0, d > d0. β > 0,
e−φ(d) ≤ 1 for all d , interaction term downweights patterns
with more points close to each other.

I Hardcore process sets φ(d) =∞, d ≤ d0,= 0, d > d0. Now,
density is 0 for all S with a pair of points less than d0 apart.



Fitting spatial point process models

I HPP: MLE is straightforward. Closed form likelihood.

I Minimum contrast method (Diggle), essentially a method of
moments idea, e.g.,

∫
(K̂ (d)− K (d))2dd , or with pair

correlation, g , or introduce powers

I Likelihood-based methods more attractive, common

I NHPP - Berman-Turner device: connects NHPP log likelihood
to a weighted Poisson regression log likelihood using
quadrature to do a numerical integration

I LGCP - Numerical integration; “representative points”

I Markov and Gibbs processes - pseudo-maximum likelihood
using the Papangelou conditional intensity; i.e.,
pseudo-likelihood through Πiλ(si |S/si ).



Bayesian model fitting of spatial point processes

I HPP - Bayes is straightforward. With Gamma prior, posterior
for λ is again a Gamma

I NHPP - Berman-Turner provides the likelihood. Adding a
prior enables routine MCMC, again integral approximation

I LGCP - Elliptical slice sampling from Murray and Adams
(2010), MALA (Møller et al.(1998), Hamiltonian MC
(Girolami and Calderhead, 2010); recently INLA (Simpson et
al. 2011)

I Cox, Shot noise processes (Møller and Waagepetersen, 2004,
2007)

I Markov and Gibbs processes - Auxiliary variables in Metropolis
Hastings (Berthelsen and Møller papers)



Bayesian inference in the literature
I Aspects of spatial point process modelling and Bayesian

inference, J. Møller
(http://conferences.inf.ed.ac.uk/bayeslectures/moeller.pdf)

I J. Møller and R.P. Waagepetersen (2007). Modern statistics
for spatial point processes (with discussion). Scandinavian
Journal of Statistics, 34, 643-711

I K.K. Berthelsen and J. Møller (2008). Non-parametric
Bayesian inference for inhomogeneous Markov point
processes. Australian and New Zealand Journal of Statistics,
50, 627-649.

I J.B. Illian, J. Møller and R.P. Waagepetersen (2009).
Hierarchical spatial point process analysis for a plant
community with high biodiversity. EES, 16, 389-405.

I P. Guttorp and T.L. Thorarinsdottir (2012) Bayesian inference
for non-Markovian point processes (in Advances and
Challenges in Space-time Modelling...).



A general inference approach

I Model - generic form [S|θ][θ]

I Observe Sobs

I Fit, obtain posterior samples θ∗b from [θ|Sobs ]

I Sample - using composition, create samples S∗b from
[Snew |Sobs ] by drawing S∗b from [S|θ∗b]

I Infer - create posterior samples of any function say h of S as
{h(S∗b), b = 1, 2, ...,B} from [h(S)|Sobs ]

I So, if we can fit and if we can sample, arbitrary inference

I Also, if we can sample, prior-posterior comparison



Generating samples

I For HPP, trivial

I For NHPP, usual thinning of an HPP(λmax )

I For LGCP, two stage - tiled realization of the GP, followed by
NHPP thinning given the GP surface

I For cluster process, usually directly generative

I For Gibbs process, perfect simulation (CFTP); birth-death
MCMC algorithm

I General thinning for generation - p-thinning, p(s) thinning

I Other mechanisms: displacement, censoring, superposition



The broad challenge
I A primary feature we are trying to infer about is a (random)

surface, i.e., an intensity. But we never observe a point on
this surface.

I Analogue with density estimation. In fact, we have empirical
kernel intensity estimates

I But also, number of points is random

I For example, consider an HPP setting. Any observed point
pattern will give an empirical intensity estimate which is not
close to flat

I In fact, null hypotheses, Ho : λ(s) = λ seems silly

I Instead, compare inference under HPP model with that from
other models.

I In general, hard to criticize models, hard to choose between
models. Not much literature, no Bayesian work



Posterior study of features
I For example, posterior distributions: [N(A)|Sobs ],

[N(A),N(B)|Sobs ], [N(A)|N(B),Sobs ], [N(A)/N(D)|Sobs ];
posterior for G and K functions; prior comparison.

I Posterior distribution of realized residuals, e.g., in NHPP,
[N(A)obs −

∫
A λ(s)ds|Sobs ].

I Posterior distribution of predicted residuals,
[N(A)obs − N(A)|Sobs ].

I Predictive residuals better for model checking

I As in linear regression: Yi ,obs − XT
i β̂ vs. Yi ,obs − Ŷi

I Important point: λ(s) informs about observed data points,
also about unobserved points.

I In a point pattern, more information than just the locations of
the observed points. Absence at other locations is informative
(Baddeley et al., 2005).



More explicitly

I Under the model, interest in b(θ) using [b(θ)|Sobs ].

I With posterior samples {θ∗l }, we obtain {b(θ∗l )}
I If interest is in [h(S)|Sobs ], then for each θ∗l , we generate S∗l

obtaining {S∗l } and thus {h(S∗l )}
I Back to b(θ), often not available explicitly. So, find h(S) such

that E (h(S)|θ) = b(θ).

I Then, to obtain b(θ∗l ), for each θ∗l , generate S∗lb’s obtaining
the set {S∗lb} so a Monte Carlo integration for b(θ∗l ) is
1
B

∑
b h(S∗lb).

I Most generally, [f (S,θ)|Sobs ] with f available explicitly, can
use {θ∗l ,S∗l }.



cont.

I Examples of b(θ)’s include:
λ(s;θ), γ(d ;θ), λ(A;θ),E (N(A)N(B)|θ), g(d ;θ),G (d ;θ).

I Examples of h(S)’s include:
N(A), (N(A),N(B)),N(A)/N(D), predictive residuals
([Nobs(A)− N(A)|Sobs ]) and conditional events with
distribution [N(A)|N(B) = m; Sobs ].

I Examples of f (S,θ) include: realized residuals
([N(A)− λ(A;θ)|Sobs ]), K (d : θ),Kinhom(d ;θ) (here f (S;θ)
takes forms like

∑
si∈S∩D

1
λ(D)g(si ; S\si ) or∑

i

∑
j 6=i

g(si ,sj )
λ(si )λ(sj )

), λ̂(s)− λ(s;θ) where λ̂(s) is a kernel

intensity estimate of λ(s).

I So, full inference is clear.



Going further

I Campbell’s Theorem (a feature with one argument):
ES(
∑

si∈S h(si )) =
∫
h(s)λ(s)ds

I Why? Let h(si ) = 1(si ∈ A), then left side is ESN(A) and
right side is

∫
A λ(s)ds = λ(A)

I If h(S) =
∑

si∈S h(si ), ES|θh(S) =
∫
h(s)λ(s)ds ≡ bh(θ)

I So, with posterior samples, {θ∗l }, bh(θ∗l ) are posterior samples
from [bh(θ)|Sobs ] and 1

L

∑
l bh(θ∗l ) is a MC integration for

E (bh(θ)|Sobs)

I If we can’t calculate bh(θ), then, with S∗l ∼ [S|Sobs ],
1
L

∑
l h(S∗l ) is a MC integration for E (h(S)|Sobs)

I And, ES|Sobs
(h(S)) = Eθ|Sobs

ES|θ(h(S)) = Eθ|Sobs
(bh(θ)

I So, 1
L

∑
l h(S∗l ) is a MC integration for E (bh(θ)|Sobs)



Going further, cont

I If we want posterior samples of bh(θ), they are bh(θ∗l ). If we
can not calculate bh(θ), we need a MC integration.

I Now, we need, for each θ∗l , {S∗lb, b = 1, 2, ...,B} ∼ [S|θ∗l ] so
1
B h(S∗lb) is a MC integration for E

S|θ∗l
(h(S) = bh(θ∗l )

I Campbell’s Theorem (a feature with two arguments):

ES

(∑
si ,sj∈S,i 6=j h(si , sj )

)
=
∫ ∫

h(s, s′)γ(s, s′)dsds′ (e.g.,

h(s, s′) = 1(s ∈ A, s′ ∈ B) yields ES(N(A)N(B)))

I Existence of expectations: Countable point pattern vs.
restriction to D ⇒ a finite point pattern.



Parametric-nonparametric

I Explicitly, E [N(A)|Sobs] ≈ 1
L

∑L
l=1

∑
s∗li∈S∗l

1(s∗li ∈ A)

I Could create model-based Bayesian intensity estimates.
Taking A = ∂s yields Bayes estimate for λ(∂s) ≈ λ(s)|∂s|,
hence for λ(s).

I With a fine grid of s, an estimated intensity surface. Size of
∂s⇔ bandwidth for a kernel intensity estimate.

I Usual kernel smoothing yields kernel intensity estimate,
λτ (s0 = 1

τ2

∑
si∈S h(||s− si ||/τ)

I If we can write λ as a parametric function, λ(s;θ) (say for an
NHPP but not for a LGCP), posterior samples of the θ yield
an estimate of λ(s;θ).

I Rao-Blackwellized vs. non-Rao-Blackwellized estimation



A bit deeper

I Features which depend upon entire S, e.g., h(si ; S/si )

I Need Georgii - Nguyen - Zessin (GNZ) result:
ES(
∑

si∈S h(si ; S/si )) = ES

∫
λ(s|S)h(s; S)ds

I Now, we have Papangelou conditional intensity

I Will expectation exist? Restrict to si ∈ S ∩ D with
∫

D . Can
bring expectation under integral

I Examples: h(u; S/u) = 1(u ∈ B) yields
ESN(S ∩ B) =

∫
B ESλ(u|S)du

I Suggests N(S ∩ B)−
∫

B λ(s|S)ds, realized innovation
residuals, which have mean 0 (Baddeley et al., 2005)

I h(u; S/u) = 1(u ∈ B)/λ(u|S) yields
ES(
∑

si∈S 1(si ∈ B)/λ(si |S/si ) = |B| (Stoyan and Grabarnik,
1991; “inverse” residuals, cute but ...)

I Other scaled residuals



cont.

I So, now if h(S) =
∑

si∈S∩D h(si ; (S ∩ D\si ),
ES∩D|θ(h(S)) = ES∩D|θ

∫
D h(s; (S ∩ D\s)λ(s|S)ds ≡ bh(θ)

I Instead, we will work with h̄(S) ≡ h(S)/N(S ∩ D)

I If N(S ∩ D) = 0, then h(S) = 0 and we define 0
0 = 1

I So, consider ES∩D|θ(h̄(S)) ≡ bh̄(θ)

I We need a different version of the GNZ result



An iterated expectation version
I We can view S over R2 which induces S ∩ D over D with

N(S ∩ D). Alternatively, suppose, given D, first generate
N(S ∩ D) = n, then locate S over D given N(S ∩ D) = n,
assuming the si are exchangeable

I A generative view (e.g., a NHPP or a cluster process) vs. a
modeling view (e.g., a Gibbs process)

I Either way, there is a joint distribution [S ∩ D,N(S ∩ D)],
hence [S ∩ D|N(S ∩ D)][N(S ∩ D)]. So, we can calculate the
expectation iteratively

I ES∩D(
∑

si∈S∩D h(si ; (S ∩ D)/si )) =
EN(S∩D)ES∩D|N(S∩D)

∑
si∈S∩D h(si ; (S ∩ D)/si ) =

EN(S∩D)(N(s ∩ D)ES∩D|N(S∩D(h(s, (S ∩ D)/s))

I And, ES∩D(
∑

si∈S∩D h(si ; (S ∩ D)/si ))/N(S ∩ D) =
ES∩Dh(s; (S ∩ D)/s) (defining 0/0 = 1)



SO

I ES∩D|θ h̄(S) = bh̄(θ) where

bh̄(θ) = ES∩D|θS ∩ Dh(s; (S ∩ D)/s)

I A usual Bayes estimate for bh̄(θ) is E (bh̄(θ)|Sobs)

I With posterior samples, {θ∗l }, a Monte Carlo integration for
the posterior mean is 1

L

∑
l bh(θ∗l )

I Typically, we can not calculate bh̄(θ) explicitly

I However, ES∩D|Sobs
h̄(S) = Eθ|Sobs

ES∩D|θ h̄(S) = Eθ|Sobs
bh̄(θ)

I So, a direct MC integration becomes 1
L h̄(S∗l )



Two examples

I We now examine two features under a model with
stationarity: G and K function

I Again, view process over all of R2, i.e., an infinite point
pattern which becomes finite under restriction to D.

I Suppose s ∈ S, ∂d s is a circle of radius d centered at s, and
N(s, d ; S) counts the number of points in ∂d s from S,
excluding s.

I Under stationarity, S ∼ S− s so N(s, d ; S) ∼ N(0, d ; S− s),
where S− s is the translation of S by s

I Every point in S is a typical point, i.e., equivalent to 0 under
translation.



Back to G function

I Recall, ND(si , d ,S) ≡ N(si , d ,S ∩ D); we only observe
ND(si , d ,S)

I Recall, G (d) = Pr [N(s, d ,S) > 0]; consider

h̄G ,d (S) =
∑

si∈S∩D

1(ND(si , d ,S) > 0)

N(S ∩ D)

which has expected value Pr [ND(s, d ,S) > 0]

I So, we are estimating Pr [ND(s, d ,S) > 0]; we want
Pr [N(s, d ,S) > 0]

I Of course ND(s, d ,S) ≤ N(s, d ,S) for any s and any S, so
G (d) = Pr [N(s, d ,S) > 0] ≥ Pr [ND(s, d ,S) > 0].

I We need edge correction

I Bayesian edge correction available, details omitted



Back to the K function

I For a model with constant first order intensity λ,
ES∩D

∑
si∈S∩D

ND (si ,d ,S\si )
N(S∩D) = ES∩DND(s, d ,S\s)

I K (d) ≡ EN(s, d ,S\s)/λ while what we can create is
KD(d) ≡ ES∩DND(s, d ,S\s)/λ.

I So the uncorrected estimator is based on
h̄K ,d (S) =

∑
si∈S∩D

ND (si ,d ,S\si )
N(S∩D)λ whose expectation is KD(d).

I Again, we see the need for edge correction. We are estimating
KD(d) rather than K (d).

I In fact, since ND(s, d ,S) ≤ N(s, d ,S), KD(d) ≤ K (d).



Cross-validation for Point Patterns

I Cross-validation can provide model assessment without
encouraging overfitting.

I Limited discussion of cross-validation methods for point
processes. Leave-one-out cross-validation from Diggle for
bandwidth-selection for kernel intensity estimate

I With a model having dependence between locations of the
points, is leave-one-out sensible? (e.g., for Gibbs processes
can’t remove points without altering the interpoint distances)

I For models with conditionally independent locations given the
intensity, leave-one-out does make sense and, more efficient,
fitting data and validation data.

I To choose the fitting data, can’t remove say 10% of the data?
This will fix the size of the point pattern.



cont.

I Rather, the p-thinning approach.

I p-thinning independently deletes each point si ∈ S with
probability 1− p. Yields Sfit and Sval . They are independent
conditional on λ(s).

I Sfit has intensity pλ(s), Sval has intensity (1− p)λ(s)

I To use fitted model for cross-validation purposes, we thin the
posterior draws from fitted model to predictive draws ( p

1−p ) to
compare with the held-out data for model adequacy and
model selection

I For implementation: Partition domain D into subregions
B1,B2, . . .BK (any shape but equal area) and evaluate a
residual measure on each



Model adequacy

I Here, the situation is a bit less clear. There is no single
criterion for model adequacy

I Posterior predictive model checking (Gelman, Meng, Stern) or
prior predictive model checking (Dey, Gelfand, Swartz,
Vlachos)

I GMS is more common, easier to do, but doesn’t criticize the
model well enough, uses the data twice (once to fit, once to
check).

I DGSV is more computationally demanding but is formally
cleaner, uses the data only once.



Predictive model checking
I Both GMS and DGSV look at discrepancy measures, D(S;θ),

for example, N(A)− λ(A;θ).

I GMS compares [D(S;θ)|Sobs ] with [D(Sobs ;θ)|Sobs ].

I The problem: draws of S from S;θ|Sobs ] will be too much like
Sobs , discrepancies will be too much like D(Sobs ;θ), the
model checking won’t be critical enough.

I DGSV create S∗l ’s from the marginal distribution of S by
drawing θ∗l from [θ] and then S∗l from [S|θ∗l ].

I Then, they obtain [S,θ|θ∗l ] and then compare [D(S∗l ;θ)|S∗l ]
with [D(Sobs ;θ)|Sobs ].

I Apples with apples comparison, uses the data once

I DGSV compare the observed discrepancy with discrepancies
you expect under the model; GMS compare the observed
discrepancies with what you expect under the model and the
data.



cont.
I Empirical coverage for model adequacy checking suffers the

GMS problem; it will not be critical enough.

I For a collection of Bk ’s, consider {[Nobs(Bk )− N(Bk )|Sobs ]}.
Check empirical coverage vs. nominal coverage.

I The S∗l ’s will be too similar to Sobs (with weak priors) so the
N(Bk ) that we generate given Sobs will be too much like
Nobs(Bk ) (a function of Sobs)

I Better to generate N(B) through S∗l ’s from the marginal
distribution rather than from the posterior distribution.

I Now, a Monte Carlo test comparison between
[Nobs(Bk )− N(Bk )|Sobs ] and {[N∗l (Bk )− N(Bk )|S∗l ]}.

I A lot of comparison - for each Bk , compare an “observed” vs.
say 99 generated posterior distributions, say using quantiles.
Lots of simultaneous inference!

I No role for empirical coverage here unless out-of-sample.
In-sample will be inadequate to criticize the model.



Model comparison

I Lack of useful model selection tools, especially for Bayesian
models. Ad hoc tests of the homogeneity and independence
assumptions of CSR, but not much for comparing models.

I Lack of likelihood precludes customary tools - AIC, BIC, DIC,
Bayes factors

I In some cases, there may be a natural process,
behavioral/mechanistic, to guide the choice of model prior to
the analysis.

I First discussions of Bayesian model selection in Akman and
Raftery - computing Bayes factors for NHPPs and change
point Poisson processes.

I Guttorp and Thorarinsdottir (2012) perform model choice via
a reversible jump algorithm to move between a nested pair of
models.



cont.

I Model comparison should be done in predictive space since
parameters don’t mean anything across models

I For a collection of choices of A ⊂ D, focus on [N(A)|Sobs ]. In
particular, compare Nobs(A) with [N(A)|Sobs ;Mj ] for each
model, j = 1, 2, ..., J.

I For model j with parameters θj , we obtain posterior samples,
θ∗j ,l and then S∗j ,l .

I We want to do this out-of-sample, through p−thinning.

I We can do this for NHPP’s, LGCP’s and for cluster processes
(superpositions of NHPP’s)

I Criteria: PMSE, perhaps normalized by the expected number,
empirical coverage, RPS

I If our only option, can do it in-sample



Ranked Probability Scores

I We propose ranked probability score (RPS) for general use,
applied to predictive distributions for set counts.

I Specifically, we propose choosing subregions Bk uniformly over
D, with each Bk having the same size and potentially
overlapping other Bk ′ .

I In fact, we use the same Bk as in the Monte Carlo assessment
above. Obtain N(Bk ) from the hold-out dataset, compare
with [N(Bk |Sfitted )] using posterior predictive point patterns

I For any Bk , we can write the RPS as
RPS(Bk ) =

∑∞
n=0[FN(Bk )|Sfitted

(n)− 1[n ≥ Nobs(Bk )]]2. Can
average over k to compare models

I Can also calculate in-sample RPS and compare with out of
sample to see if model choice differs.



Finally!

I Can’t use G , F , K , Kinhom to compare models.

I Model features. For example, can’t say that G for one model
is “better” than G for another model?

I Posterior distributions, e.g., [G (d : θj )|Sobs ;Mj ], can criticize
say CSR which has known distance functions when CSR is
nested within the fitted model, Mj .

I Compare, e.g., [G (d : θj )|Sobs ;Mj ] with empirical estimate

Ĝ (d)? Since latter is a nonparametric estimate, such
comparison could be used to criticize Mj .

I Since K functions involve parameters, the empirical estimate
will be semiparametric with parameter estimates based upon
some model.

I Analogy with theoretical Q-Q plots


