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Outline

» Basics of spatial point patterns

» Diagnostic tools

» Models

» Model fitting within a Bayesian framework

» Posterior inference using simulated point patterns

» GNZ formula and variants

» Residual analysis, model adequacy, model comparison

» Examples



What is a point pattern?

» For a specified, bounded region D, a set of locations
si,i=1,2...,n

» The locations are viewed as “random”

» Need not have variables at locations, just the pattern of points

» Crude features of patterns, e.g., complete randomness,
clustering/attraction, inhibition/repulsion, regular/systematic

» Can add “marks"”, i.e., labels. Then, a point pattern for each
mark; comparison of patterns
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cluster pattern; systematic pattern
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Examples

> In looking at ecological processes, interest in the pattern of
occurrences of species, e.g., the pattern of trees in a forest,
say junipers and pinions.

> In spatial epidemiology, we seek to find pattern in disease
cases, perhaps different patterns for cases vs. controls; breast
cancer cases: treatment option - mastectomy or radiation

» In syndromic surveillance we seek to identify disease
outbreaks, looking for clustering of cases, over time.

» Evolution/growth of a city, i.e., urban development, pattern of
development of single family homes or of commercial property
over time.



The key players (my view)

>

Adrian Baddeley - impressive theoretical contributions;
recently, more applied effort - likelihood methods, exploratory
tools, residual analysis, spatstat package

Peter Diggle - ahead of his time; lovely early theory; broad
spatial interests, always a strong practical bent, accessible
(classic) books and useful website

Jesper Mgller - outstanding theoretician; rich classes of
models and model fitting; simulation and fitting algorithms for
Markov and Cox processes; a book

Recent book of lllian, Pentinen, Stoyan, and Stoyan - a broad,
richly exemplified, accessible volume
Handbook of Spatial Statistics (Gelfand et al., 2010);

Hierarchical Modeling and Analysis for Spatial Data, 2nd
Edition (Banerjee et al., 2014)



The contribution

» At the heart is modeling and distribution theory for spatial
point patterns

» Given model fitting, focus on inference within a Bayesian
framework

» From an inferential perspective, spatial point pattern work is
least developed and even more the case within the Bayesian
framework

» Use simulation as the tool, enables full inference, with
uncertainty

> ldeas for residual analysis, model adequacy, model comparison

» Lots of preliminaries



The basics

» Point patterns consider the randomness associated with the
locations of the points.

> “No spatial pattern?” A uniform distribution of points?
Complete spatial randomness (CSR)?
» For a bounded region D, denote the realization as
s;j, I = 1,2....n with both n and the s; random.
» Are we seeing a finite realization of an infinite point pattern as

a result of imposing D (edge effects and the shape of D might
matter)?

» Are we seeing a finite point pattern associated with a specified
D (e.g., an island, a forest, a city)?
» Modeling depends upon setting. Second case better suited to
application, more flexible modeling



cont.

Need not have variables at locations, just the pattern of
points provided by the locations.

Crude features of the patterns. CSR is a place to start, hope
to criticize. Why? In applications, it would not be operating.
We seek to shed light on where there is departure from
randomness and what its nature might be.

Departure can result from environmental features, regression
models to explain pattern we observe

Instead, clustering or attraction, possibly inhibition or
repulsion, perhaps regular or systematic behavior which we
seek to explain.



Modeling

» We focus on point patterns over D C R?

» We consider a bounded, connected subset D. We denote a
random realization of a point pattern by S with elements
S$1,...,Snp.

» S is random and so are any features calculated from it.

> A probabilistic model for S € D must place a distribution over
all possible realizations in D.

» In practice, often easier to examine features/functionals of
this distribution than to specify the distribution.

» Generative specification: (i) distribution over {0,1,2,...} to
provide number of points then, (ii) distribution to jointly
locate these points over D.



More explicitly:

» Two ingredients to specify a generative probabilistic model for
S

» Distribution for N(D), the number of points in D, a
distribution over the set n € {0,1,..,00}.

» A multivariate location density over D", for any n, say
f(s1,82,...,Sp). Since points are unordered/unlabeled, f must
be symmetric in its arguments.

» With Js denoting a small circular neighborhood around s,
P(N(0s1) =1,N(9sp) =1,...,N(0sp) =1) =
f(s1,82,...,80)M;|0s;|, with |Os| the area of Os.

» We need to specify f consistently over all S.

» Joint dist has marginal-conditional form
P(N(D) = n)n!f(s1,s2, ...,Sp).



Stationarity

v

A stationary point pattern model:

f(s1,82,...,8n) = f(s1+h,sp+h,...;s,+h) forall n,s;, and
h.

This condition would naturally be proposed over R? and
applied, suitably, over D.

v

v

Stationarity is a model property, not a model specification.

Will return to below

v



Counting measure

» Analogous to N(D), introduce count variables, N(B), i.e.,
N(B) = s 1(si € B).

» N(B) is computed by looking at the points in S individually, a
first order property.

» Pairs of points, a second order property (below)

» Random counting measure over a o-algebra through finite
dimensional distributions, i.e., the joint distribution for a finite
collection of count variables.

> A realization of a point pattern is equivalent to a realization
of a counting measure (void sets).



Poisson process

» Recall Poisson process over a set D, intensity A(s).
N(B) ~ Po(A(B)) where A(B) = [ A(s)ds.
» In addition, if By and By are disjoint, then N(Bj) and N(By)
are independent
» The random Poisson measure induced by A(s):
Iimasﬁo% = N(s) or equivalently, N(B) = [z N(s)d
» Independence of disjoint sets implies
f(s1,82,...,80) = Mif(s;) = M;A(s;)/A\(D) where
D) = [, A(s)ds
» P(N(0s) =1) = E(N(Js)) = \(0s) = A(s)|0s| = A(s)ds.



Moment measures

» First order properties, i.e., the first moment measure,
{E(N(B)) : B € B}. Given A(s), we can compute
E(N(B)) = [ A(s)ds.

» However, given that the collection, {E(N(B)): B € B}, is a
measure, we can extract the first-order intensity:
A(s) = Iim\@s|—>0%-

> If f(s1,...,8n) = M;f(s;), then A(s) = f(s)A(D).



Second order properties

» For second-order properties, consider
’y(Bl X Bz) = Eg 2575,65 1(5 S Bl,S/ S 82). Define 7(5,5’),
second order intensity through
V(B x B2) = [, [, (s,8')ds'ds.

» So, if By, B, disjoint,

Es(N(B1)N(B2)) = g, [g,(s,s')ds'ds.

» Hence, wwith sufficiently small sets,
v(s,s') = |im|65|—>0,|8s’\—>0%g5(/(‘95/))

» The pair correlation function, y(s,s’)/A(s)\(s’). When
A(s) = A simplifies to (s, s’)/\? and, in fact, equals 1 under
CSR. > 1 implies attraction, < 1 implies repulsion.

» Under stationarity, v(s,s’) = v(s —s’). Isotropic means

(s s') =(lls = s'l]).



Papangelou conditional intensity

>

Consider A(s|S) for a given location s and a given realization
S?

A(0s)|S) =~ A(s|S)ds is interpreted as the conditional
probability that there is a point of the process in ds and the
rest of the process coincides with S.

Roughly, A(9s|S) is the probability that there is a point of S
in Os and the rest of S lies outside of Os.

A(s|S) = A(s|S/s),s € S; = A(s|S),s not € S
A(s|S) is random since S is and Es(A(s|S)) = A(s).
A(s|S) = ?SS) where f(S) is the density of the spatial point
process (with respect to an HPP(1))

f(S) is not fixed dimension; usually specified up to
normalizing constant which cancels from ratio for A(s|S)

For conditionally independent locations A(s|S) = A(s).



Homogeneous Poisson Process (HPP)

» CSR: A\(s) = X (HPP), A\(B) = \|B|

» Stationarity implies that A(s) = A for all s and thus,
A(B) = A|B| for all B C D.

> f(s1,s2,....,8,) = 1/|D|".

» The HPP is only one stationary process specification. It

specifies a constant intensity with conditionally independent
locations.

» More general models include interactions between points, e.g.,
the stationary Gibbs processes.

» Can be a null model for certain types of data, e.g., physical
processes in a homogeneous environment, for example,
interacting particle models.



Exploratory tools, the G function

» Again, complete spatial randomness (CSR) = HPP()\). Want
to criticize CSR

» Distance based approaches; G, F, and K functions

» G(d), the “nearest neighbor” distribution, i.e., the c.d.f. of
the nearest neighbor distance, event to event.

» G(d) = Pr(nearest event < d).

» F(d) is the “empty space” distribution, i.e., for an arbitrary

location, the c.d.f. of the nearest neighbor distance, point to
event

» F(d) = Pr(nearest event < d).
» Under CSR, G(d) = F(d) = 1 — exp(—Ard?).

» G places a lot of mass on small distances. We expect to see
some clustering under CSR.



cont.

Empirical c.d.f., G(d), arises from the n nearest neighbor
distances (for s1, for sy, etc.). Denote this set by

{d1,da, ..., dn}.

With bounded D, we will need an edge correction, e.g., if, for
s;, d > b;, where b; is the distance from s; to edge of D.

A > I(di<d<b))
6(d) = == fa<ey

So, if d > b;, then the event {d; < d} is not observed.
Comparison of G with G under CSR is usually through a
theoretical Q-Q plot.

Shorter tails suggest clustering/attraction; longer tails suggest
inhibition /repulsion.



The K function

» The K function considers the expected number of points
within distance d of an arbitrary point.

» Under stationarity, this expectation is the same for any point.

» K(d) = (\)7LE(# of points within d of an arbitrary point)
The scaling by 1/, along with stationarity, scales K(d) to be
free of .

» For example, under CSR, K(d) = And?/\ = wd?, i.e., the
area of a circle of radius d.



cont.

> R(d) = ()5, Sy 1dy = [Isi = 1| < o)/
= (nA\)"1 Y, ri where A = n/|D| and r; is number of s; within
d of S;

» Edge correction, wj; for s; too near boundary of D.

» w;; is the conditional probability that an event is in D given
that it is exactly distance dj; from s;

» Approximated as the proportion of the circumference of a
circle centered at s; with radius ||s; — s;|| that lies within D.

> In fact, for a stationary process, can define
K(d) = fIIUH<d g(u)du, with g the pair correlation function

2!
> As a result, the second moment measure v(d) = A ;rc(ld)

» Suggests the possibility of §(d).



Finite point pattern models (restriction to D)

» Nonhomogeneous Poisson process (NHPP) - A(s),
conditionally independent locations with location density,
f(s) = A(s)/A(D)

» Scaling form: A(s;0) = Af(s; 0), f a bivariate density function
truncated to D.

» Sufficiently rich choices for f7 Mixture models, e.g.,
f(s) = Zszl pkfi(s). But fitting challenges.

» Nonnegativity challenges for trend surfaces.

» Most common: log A(s) = X' (s)~; spatial covariates drive
the point pattern

> Need to calculate [, €X' ()7 ds to obtain the likelihood.
X(s)? Discrete approximation, ecological fallacy, tiled surface.
But, without finer covariate resolution, can’t do better.



Log Gaussian Cox process (LGCP)

v

A particular Cox process; we write A(s) = g(X(s)"~)Ao(s)
> Require g(-) > 0 and think of \o(s) as the error process, a
realization of a positive stochastic process

> Natural center is mean 1

» Conditional on {\g(s),s € D} (and «), we have a NHPP

» Log Gaussian Cox process (LGCP) iff A(s) = exp(Z(s)), Z(s)
from a spatial Gaussian process with mean say XT(S)"Y and
covariance function a2p(-)

» Two stage process: [S|A(s)][A(s)]



The likelihood

» For an NHPP or a LGCP, what is the likelihood?

» As a function of A(s), L({A\(s),s € D}; Sops) = e MO A(s;)

» A function of an entire surface. For NHPP, a parametric
function, for LGCP, a process realization

» So, A(D) = [, A(s)ds is a regular or a stochastic integral.

» Discrete approximation for [ X ()Y+Z(s) gs using
representative points

» Challenges: For NHPP, ecological fallacy, for LGCP,
convergence



More general Cox processes

» Neyman Scott process, Matérn process, Thomas process; shot
noise, e.g., Poisson Gamma process

» Suppose we generate parent events from a NHPP with A(s)
say K, and their locations say p,,k =1,2,.... K.

» Next, suppose each parent produces a random (but i.i.d.)
number of offspring, N, where the Ny are i.i.d. according say,
g = Po(9).

» Next, locate the offspring relative to the parent.

» For kth parent, locate offspring according to i.i.d. draws from
a bivariate density, f(s; pt,).

» Only the offspring are retained to yield the point pattern.



cont.

If bivariate density is N(p,,c?l), a (modified) Thomas
process

Compound Poisson process: degenerate offspring density at
. Count at py is a ‘'mark’ at that location.

The Matérn process: offspring at p, uniform in a circle of
radius R (a parameter) around g

More generally, combine the steps of generating the number
of children and their locations. That is, generate N i.i.d ~ gk
and generate s, 8, ..., Sy i.i.d ~ Zle Ef(si py, T)

For example, with above, say, gx = Po(K\).



Shot noise processes

v

A Cox process that is also conditionally a NHPP; an
alternative to a LGCP.

Again, A(s) = X' (98 ) (s)
Now, Ao(s) is @ mean 1 shot noise process so that A(s) is
centered around the deterministic component.

Usual form: Ao(s) = > 5.5 f(s — si)m(s;), with S drawn from
a HPP(X) and m(s;) a constant, m

f is a density over D and m(s;) > 0.

m(s;) perhaps m (or from a regression on say X(s) over D or
a process realization over D)

m(s;) denotes contribution to Ao(s) from s; and Ao(s)
accumulates the “shots” arising from S



Poisson-Gamma process

» Poisson Gamma process is an example of a shot noise process.
Allows both over and under-dispersion relative to an HPP.

» General gamma process provides a random positive spatial
surface, i.e., [(du) ~ Ga(a(du), 371) (i.e., [,T(du) =T(A))
> We kernel mix to obtain the random intensity
A(0s) =~ A(s|0s| = [, f(s — u)[(du)|Os|
> We draw a realization of an HPP over D to obtain
S ={s,j=12,...m}
» We simplify the intensity by discretizing D to S* yielding
A(s) = Dgresr f(s — s7)w(s)), w(s;) a Gamma variable.
J



Markov, Gibbs processes

» Markov processes, for us Gibbs processes. Examples here:
Strauss process, hardcore process

> A finite Gibbs process if location density is
f(S) = exp(—Q(S)) with regard to an HPP with unit intensity
> Q(Sl,SQ, ...,Sn) =
c + 27:1 hl(S,') + Zi?éj hQ(S,', SJ') 4+ ...+ hn(Sl,Sz, ...,Sn)
> h's have parameters, ¢y is a normalizing constant over xD", a
function of the parameters in the h's

» ¢p is almost always intractable, making E(N(D)) intractable



cont.

The h's are potentials of order 1, 2,...n, respectively, each
symmetric in its arguments.

With potentials only of order 1, NHPP with A(s) = e M),
Higher order potentials capture/control interaction.

Pairwise interactions: only include h; and hy. To guarantee
integrability, we must take hy > 0.

This implies we can only capture inhibition.

If h1(s) is constant, homogeneous Gibbs process.



cont.

), eg., [Is — &[]/
Papangelou conditional intensity has a simple form in this
case, A(s|S) = exp(—(hu(s) + 271y o(lls —sill))).

Unknown normalizing constant cancels from the conditional
Intensity

Most common form for hy is ¢(||s — §/|

Examples through ¢(d), d is an interpoint distance.

Strauss process sets ¢(d) = ,d < dy,=0,d > dy. >0,
e~?d) <1 for all d, interaction term downweights patterns
with more points close to each other.

Hardcore process sets ¢(d) = oo, d < dy,= 0,d > dy. Now,
density is O for all S with a pair of points less than dy apart.



Fitting spatial point process models

» HPP: MLE is straightforward. Closed form likelihood.

» Minimum contrast method (Diggle), essentially a method of
moments idea, e.g., [(K(d) — K(d))?dd, or with pair
correlation, g, or introduce powers

» Likelihood-based methods more attractive, common

» NHPP - Berman-Turner device: connects NHPP log likelihood
to a weighted Poisson regression log likelihood using
quadrature to do a numerical integration

» LGCP - Numerical integration; “representative points”

» Markov and Gibbs processes - pseudo-maximum likelihood
using the Papangelou conditional intensity; i.e.,
pseudo-likelihood through M;\(s;|S/s;).



Bayesian model fitting of spatial point processes

» HPP - Bayes is straightforward. With Gamma prior, posterior
for X\ is again a Gamma

» NHPP - Berman-Turner provides the likelihood. Adding a
prior enables routine MCMC, again integral approximation

» LGCP - Elliptical slice sampling from Murray and Adams
(2010), MALA (Mgller et al.(1998), Hamiltonian MC
(Girolami and Calderhead, 2010); recently INLA (Simpson et
al. 2011)

» Cox, Shot noise processes (Mgller and Waagepetersen, 2004,
2007)

» Markov and Gibbs processes - Auxiliary variables in Metropolis
Hastings (Berthelsen and Mgller papers)



Bayesian inference in the literature

>

Aspects of spatial point process modelling and Bayesian
inference, J. Mgller
(http://conferences.inf.ed.ac.uk/bayeslectures/moeller.pdf)

J. Mgiller and R.P. Waagepetersen (2007). Modern statistics
for spatial point processes (with discussion). Scandinavian
Journal of Statistics, 34, 643-711

K.K. Berthelsen and J. Mgller (2008). Non-parametric
Bayesian inference for inhomogeneous Markov point
processes. Australian and New Zealand Journal of Statistics,
50, 627-649.

J.B. lllian, J. Mgller and R.P. Waagepetersen (2009).
Hierarchical spatial point process analysis for a plant
community with high biodiversity. EES, 16, 389-405.

P. Guttorp and T.L. Thorarinsdottir (2012) Bayesian inference
for non-Markovian point processes (in Advances and
Challenges in Space-time Modelling...).



A general inference approach

v

Model - generic form [S|6][6]
Observe S,ps

v

v

Fit, obtain posterior samples 6} from [0S ps]

v

Sample - using composition, create samples S} from
[Shew|Sobs] by drawing S from [S|6%]

Infer - create posterior samples of any function say h of S as
{h(S}),b=1,2,..., B} from [h(S)|Sops]

So, if we can fit and if we can sample, arbitrary inference

v

v

v

Also, if we can sample, prior-posterior comparison



Generating samples

» For HPP, trivial
» For NHPP, usual thinning of an HPP(Ap,ax)

» For LGCP, two stage - tiled realization of the GP, followed by
NHPP thinning given the GP surface

» For cluster process, usually directly generative

» For Gibbs process, perfect simulation (CFTP); birth-death
MCMC algorithm

» General thinning for generation - p-thinning, p(s) thinning

» Other mechanisms: displacement, censoring, superposition



The broad challenge

» A primary feature we are trying to infer about is a (random)
surface, i.e., an intensity. But we never observe a point on
this surface.

> Analogue with density estimation. In fact, we have empirical
kernel intensity estimates

» But also, number of points is random

» For example, consider an HPP setting. Any observed point
pattern will give an empirical intensity estimate which is not
close to flat

» In fact, null hypotheses, H, : A(s) = A seems silly

> Instead, compare inference under HPP model with that from
other models.

> In general, hard to criticize models, hard to choose between
models. Not much literature, no Bayesian work



Posterior study of features

>

For example, posterior distributions: [N(A)|Sobs],

[N(A), N(B)[Sobs], [N(A)IN(B), Sobs]. [N(A)/N(D)|Sops];

posterior for G and K functions; prior comparison.

Posterior distribution of realized residuals, e.g., in NHPP,
obs fA ds|sobs]

Posterlor distribution of predicted residuals,

[N(A)obs - N(A)‘SobS]-

Predictive residuals better for model checking

As in linear regression: Y; ops — X,-TB vs. Y] obs — \A/,

Important point: A(s) informs about observed data points,

also about unobserved points.

In a point pattern, more information than just the locations of
the observed points. Absence at other locations is informative
(Baddeley et al., 2005).



More explicitly

» Under the model, interest in b(8) using [b(0)|Sops]-

» With posterior samples {67}, we obtain {b(07)}

> If interest is in [h(S)|Sops], then for each 67, we generate S}
obtaining {S7} and thus {h(S})}

» Back to b(6), often not available explicitly. So, find h(S) such
that E(h(S)|0) = b(0).

» Then, to obtain b(87), for each 7, generate Sj,'s obtaining
the set {Sj,} so a Monte Carlo integration for b(67) is
2 h(Sih).

> Most generally, [f(S, 8)|Sobs] with f available explicitly, can
use {07,S]}.



cont.

» Examples of b(0)'s include:
A(s; 0),7(d: ), \(A; 0), E(N(A)N(B)|0), g(d; 8), G(d; 6).
» Examples of h(S)'s include:
N(A),(N(A),N(B)),N(A)/N(D), predictive residuals
([Nobs(A) — N(A)|Sops]) and conditional events with
distribution [N(A)|N(B) = m; Sops].

» Examples of (S, 8) include: realized residuals
([N(A) — A(A; 0)|Sobs]), K(d :0), Kinhom(d; @) (here £(S; 0)
takes forms like > ¢ csp ﬁg(s;; S\s;) or
DDt )\gs(s)’)\slsj ), A(s) — A(s; ) where A(s) is a kernel
intensity estimate of A(s).

» So, full inference is clear.



Going further

>

Campbell's Theorem (a feature with one argument):

ES(ZS eS f h

Why? Let h( ,) =1(si € A), then left side is Es/N(A) and
right side is [, A(s)ds = A\(A)

If h(S) = 3_g,cs h(si). Egigh(S) = [ h(s)A(s)ds = by(6)
So, with posterior samples, {07}, by(67) are posterior samples
from [bs(8)|Sobs] and 1 3=, by(607) is a MC integration for
E(bh(0)|sobs)

If we can't calculate by(8), then, with S} ~ [S|Sops],
157, h(S7) is a MC integration for E(h(S)|Sops)

And, Esgs,,. (H(S)) = Egis., Es o(h(S)) = Egis., (51(6)
So, 7 >, h(S}) is a MC integration for E(bx(8)|Sobs)



Going further, cont

» If we want posterior samples of by(0), they are by(07). If we
can not calculate by(€), we need a MC integration.

» Now, we need, for each 87, {Sj,,b=1,2,..., B} ~ [S|6]] so
£h(S},) is a MC integration for E |97(h(S) = bp(07)

» Campbell's Theorem (a feature with two arguments):
Es (Zsi7sj€s7i# (si,sj ) = [ [ h(s,s')y(s,s")dsds’ (e.g.
h(s,s') =1(s € A,s' € B) yields ES(N( YN(B)))

» Existence of expectations: Countable point pattern vs.
restriction to D = a finite point pattern.



Parametric-nonparametric

> Explicitly, E[N(A)[Sobs] & 1 211 Ysies: (5 € A)

» Could create model-based Bayesian intensity estimates.
Taking A = Os yields Bayes estimate for A(Js) ~ A(s)|0s|,
hence for A(s).

» With a fine grid of s, an estimated intensity surface. Size of
0s < bandwidth for a kernel intensity estimate.

> Usual kernel smoothing yields kernel intensity estimate,
Ar(s0 = 5 3 s h(lls — sill/7)
> If we can write \ as a parametric function, A(s; @) (say for an

NHPP but not for a LGCP), posterior samples of the 6 yield
an estimate of A(s; 8).

» Rao-Blackwellized vs. non-Rao-Blackwellized estimation



A bit deeper

» Features which depend upon entire S, e.g., h(sj; S/s)

» Need Georgii - Nguyen - Zessin (GNZ) result:
Es(> g .cs h(si;S/si)) = Es [ A(s[S)h(s; S)ds

» Now, we have Papangelou conditional intensity

» Will expectation exist? Restrict to's; € SN D with fD. Can
bring expectation under integral

» Examples: h(u; S/u) = 1(u € B) yields
EsN(SN B) = [z EsA(u[S)du

» Suggests N(S N B) fB (s|S)ds, realized innovation
residuals, WhICh have mean 0 (Baddeley et al., 2005)

» h(u;S/u) = 1(u € B)/A(ulS) yields
Es(D s.cs 1(si € B)/A(si|S/si) = | B| (Stoyan and Grabarnik,
1991; “inverse” residuals, cute but ...)

» Other scaled residuals



cont.

v

So, now if h(S) =3 ¢ csnp h(si; (SN D\s;),

ESOD|0(h(S)) = Esnpig Jp h(s; (S N D\s)A(s|S)ds = b(0)
Instead, we will work with h(S) = h(S)/N(S N D)

If N(SN D) =0, then h(S) = 0 and we define 3 =1

So, consider ESmD\G(/_’(S)) = b;(0)

We need a different version of the GNZ result

v

v

v

v



An iterated expectation version

>

We can view S over R? which induces SN D over D with
N(S N D). Alternatively, suppose, given D, first generate

N(S N D) = n, then locate S over D given N(SN D) = n,
assuming the s; are exchangeable

A generative view (e.g., a NHPP or a cluster process) vs. a
modeling view (e.g., a Gibbs process)
Either way, there is a joint distribution [S N D, N(S N D)],

hence [S N D|N(S N D)][N(S N D)]. So, we can calculate the
expectation iteratively

Esnp(D_s.csnp h(sii (SN D)/sj)) =
En(snp)Esnpin(snp) 2 _s.esnp h(sii (SN D)/si) =
En(snpy(N(s N D)Esnpinesno(h(s, (SN D)/s))

And, Esnp(3, csp hisi: (S N D)/s:))/N(S (1 D) =
Esnph(s; (SN D)/s) (defining 0/0 = 1)



SO

ESOD|0/_7(S) = by(0) where
bz(0) = EqrpigS N Dh(s; (SN D)/s)
A usual Bayes estimate for b;(8) is E(b;(0)|Sobs)

With posterior samples, {67}, a Monte Carlo integration for
the posterior mean is § >, by(7)

Typically, we can not calculate b;(8) explicitly
obsh(s) = EelsobsEst‘eh(s) - Ea‘sobsbﬁ(a)
So, a direct MC integration becomes $h(S})

However, Esnp|s



Two examples

» We now examine two features under a model with
stationarity: G and K function

» Again, view process over all of R?, i.e., an infinite point
pattern which becomes finite under restriction to D.

> Suppose s € S, Jys is a circle of radius d centered at s, and
N(s, d;S) counts the number of points in dys from S,
excluding s.

» Under stationarity, S ~ S —s so N(s,d;S) ~ N(0,d;S —s),
where S — s is the translation of S by s

» Every point in S is a typical point, i.e., equivalent to 0 under
translation.



Back to G function

» Recall, Np(s;,d,S) = N(s;,d,S N D); we only observe
ND(S,’,d,S)

» Recall, G(d) = Pr[N(s,d,S) > 0]; consider

hea(S)= ) 1(NDIEIS(gC;;SD))> 0)

s;eSND

which has expected value Pr[Np(s,d,S) > 0]

» So, we are estimating Pr[Np(s, d,S) > 0]; we want
Pr[N(s,d,S) > 0]

» Of course Np(s,d,S) < N(s,d,S) for any s and any S, so
G(d) = Pr[N(s,d,S) > 0] > Pr[Np(s,d,S) > 0].

> We need edge correction

> Bayesian edge correction available, details omitted



Back to the K function

» For a model with constant first order intensity A,
Esnp ZS;GSHD % = EsnpNp(s,d,S\s)
» K(d) = EN(s,d,S\s)/\ while what we can create is
KD(d) = ESQDND(Sa d, S\S)/)\
» So the uncorrected estimator is based on
hk.q(S) = > s.eSnD % whose expectation is Kp(d).
» Again, we see the need for edge correction. We are estimating
Kp(d) rather than K(d).

> In fact, since Np(s,d,S) < N(s,d,S), Kp(d) < K(d).



Cross-validation for Point Patterns

» Cross-validation can provide model assessment without
encouraging overfitting.

» Limited discussion of cross-validation methods for point
processes. Leave-one-out cross-validation from Diggle for
bandwidth-selection for kernel intensity estimate

» With a model having dependence between locations of the
points, is leave-one-out sensible? (e.g., for Gibbs processes
can't remove points without altering the interpoint distances)

» For models with conditionally independent locations given the
intensity, leave-one-out does make sense and, more efficient,
fitting data and validation data.

» To choose the fitting data, can’t remove say 10% of the data?
This will fix the size of the point pattern.



cont.

Rather, the p-thinning approach.

p-thinning independently deletes each point s; € S with
probability 1 — p. Yields S™ and §*?/. They are independent
conditional on A(s).

S7 has intensity pA(s), S*? has intensity (1 — p)A(s)
To use fitted model for cross-validation purposes, we thin the
posterior draws from fitted model to predictive draws (£;) to

compare with the held-out data for model adequacy and
model selection

For implementation: Partition domain D into subregions
Bi, By, ... Bk (any shape but equal area) and evaluate a
residual measure on each



Model

adequacy

Here, the situation is a bit less clear. There is no single
criterion for model adequacy

Posterior predictive model checking (Gelman, Meng, Stern) or
prior predictive model checking (Dey, Gelfand, Swartz,
Vlachos)

GMS is more common, easier to do, but doesn't criticize the
model well enough, uses the data twice (once to fit, once to
check).

DGSV is more computationally demanding but is formally
cleaner, uses the data only once.



Predictive model checking

>

Both GMS and DGSV look at discrepancy measures, D(S; 8),
for example, N(A) — A(A; 9).

GMS compares [D(S; 0)|Sops] with [D(Sobs; @)|Sobs]-

The problem: draws of S from S; |S,ps] will be too much like
Sobs, discrepancies will be too much like D(Sops; 8), the
model checking won't be critical enough.

DGSV create S;'s from the marginal distribution of S by
drawing 6] from [0] and then S} from [S|67].

Then, they obtain [S, 8|07] and then compare [D(S]; 6)|S]]
with [D(Sobs; 0)|Sobs]-

Apples with apples comparison, uses the data once

DGSV compare the observed discrepancy with discrepancies
you expect under the model; GMS compare the observed
discrepancies with what you expect under the model and the
data.



cont.

Empirical coverage for model adequacy checking suffers the
GMS problem; it will not be critical enough.

For a collection of By's, consider {[Nops(Bk) — N(Bk)|Sops]}-
Check empirical coverage vs. nominal coverage.

The Sj's will be too similar to Syps (with weak priors) so the
N(Bx) that we generate given S,ps will be too much like
Nops(Bx) (a function of Syps)

Better to generate N(B) through Sj's from the marginal
distribution rather than from the posterior distribution.

Now, a Monte Carlo test comparison between

[Nobs(Bk) — N(Bi)[Sobs] and {[N}(Bx) — N(Bx)IS7]}-

A lot of comparison - for each By, compare an “observed” vs.

say 99 generated posterior distributions, say using quantiles.
Lots of simultaneous inference!

No role for empirical coverage here unless out-of-sample.
In-sample will be inadequate to criticize the model.



Model

comparison

Lack of useful model selection tools, especially for Bayesian
models. Ad hoc tests of the homogeneity and independence
assumptions of CSR, but not much for comparing models.

Lack of likelihood precludes customary tools - AlC, BIC, DIC,
Bayes factors

In some cases, there may be a natural process,
behavioral /mechanistic, to guide the choice of model prior to
the analysis.

First discussions of Bayesian model selection in Akman and
Raftery - computing Bayes factors for NHPPs and change
point Poisson processes.

Guttorp and Thorarinsdottir (2012) perform model choice via
a reversible jump algorithm to move between a nested pair of
models.



cont.

Model comparison should be done in predictive space since
parameters don't mean anything across models

For a collection of choices of A C D, focus on [N(A)|Sops]. In
particular, compare Nops(A) with [N(A)|Sops; M;] for each
model, j =1,2, ..., J.

For model j with parameters 6;, we obtain posterior samples,
05, and then S; .

We want to do this out-of-sample, through p—thinning.

We can do this for NHPP's, LGCP’s and for cluster processes
(superpositions of NHPP's)

Criteria: PMSE, perhaps normalized by the expected number,
empirical coverage, RPS

If our only option, can do it in-sample



Ranked Probability Scores

» We propose ranked probability score (RPS) for general use,
applied to predictive distributions for set counts.

» Specifically, we propose choosing subregions By uniformly over
D, with each By having the same size and potentially
overlapping other By:.

» In fact, we use the same By as in the Monte Carlo assessment
above. Obtain N(By) from the hold-out dataset, compare
with [N(Bk|Sfitted)] using posterior predictive point patterns

» For any By, we can write the RPS as

RPS(Bi) = Yool FN(BY)[Sses (M) — [ > Nops(Bi)]]?. Can
average over k to compare models

» Can also calculate in-sample RPS and compare with out of
sample to see if model choice differs.



Finally!

Can't use G, F, K, Kiphom to compare models.

Model features. For example, can't say that G for one model
is “better” than G for another model?

Posterior distributions, e.g., [G(d : })|Sobs; Mj], can criticize
say CSR which has known distance functions when CSR is
nested within the fitted model, M;.

Compare, e.g., [G(d : 6})|Sobs; Mj] with empirical estimate

G(d)? Since latter is a nonparametric estimate, such
comparison could be used to criticize M;.

Since K functions involve parameters, the empirical estimate
will be semiparametric with parameter estimates based upon
some model.

Analogy with theoretical Q-Q plots



