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Outline

I Some basics of directional data

I Briefly, wrapped normal distributions and wrapped Gaussian
processes

I Projected normal distributions and projected Gaussian
processes in space and space-time

I Examples



Directional data

I Directional, circular, angular data (here, in 2 dimensions)
I Applications include:

I meteorology (wind direction)
I oceanography (wave direction, different from wind direction)
I ecology (animal movement)
I periodic data, say daily or weekly, “wrap” it to be circular

(time of max ozone level, time and day of a particular type of
crime), convert to [0, 2π)

I Some of these applications can be spatial - wind, wave
directions

I Can have a linear variable as well - ozone level, wave height

I Can be dynamic

I Here, exclusively a Bayesian view



Challenges

I Support restriction is not just [0, 2π) but circularity, i.e.,
sensitivity to the starting point.

I An angle or, equivalently, a real number on [0, 2π) given a
fixed orientation

I However, inference should not depend upon “choice of
origin”, “sense of rotation”

I Circle is very different topologically from the line; beginning
coincides with the end

I “Direction has no magnitude.” No ordering or ranking.

I Is it 2-dim, e.g., angle associated with resultant of a N-S
direction and an E-W direction

I Sample mean and variance don’t mean anything, e.g., for the
sample 1o , 0o , 359o , sample mean is 120o! Clearly 0o more
sensible. Sample variance is also silly.



Circular distributions

I A probability distribution whose entire mass is on the
circumference of a unit circle

I We work with the absolutely continuous case (w.r.t. Lebesgue
measure on the circle) with density f (θ).

I Properties:
I cdf: F (θ + 2π)− F (θ) = 1, θ ∈ R1

I with density: f (θ) ≥ 0
I
∫ 2π

0
f (θ)dθ = 1

I f (θ + 2kπ) = f (θ) for any integer k (f is periodic)



Intrinsic Approach

I von Mises distribution M(µ, κ), density

f (θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ),

where µ is mean direction, κ is concentration, and I0 modified
Bessel function of the first kind of order 0.

I Most common circular distribution. Circular analogue of
normal distribution for linear data

I symmetric, unimodal; mixture models to add flexibility

I Infeasible for multivariate angular data

I For spatial or temporal or space-time data, conditionally
independent von Mises with process models at second stage
for µ, κ. Computationally unattractive.



Moment properties

I Expectations under circular densities are hard to compute,
e.g., for the Von Mises, wrapped distributions and projected
normals. Work with associated complex variable on the unit
circle in the complex plane, Z = e iθ.

I E (Z r ) = E (e irθ) ≡ ρre iµr , i.e, value of the characteristic
function at r .

I Thus, we have ρrcos(µr ) = Ecos(rθ) and
ρr sin(µr ) = E sin(rθ).

I When r = 1, we have ρcosµ = E (cosθ) and ρsinµ = E (sinθ).

I Solving for the mean direction µ = atan2 Esin(θ)
Ecos(θ)

I We have the resultant/concentration
ρ(≡ c) =

√
(Ecos(θ))2 + (E sin(θ))2 ≤ 1



Wrapping

I Wrap a linear variable, i.e., θ = Ymod2π

I If g(y) is a density on R1, wrapped density looks like

f (θ) =
∞∑

k=−∞
g(θ + 2πk)

I Obviously, can rescale from [0, L) to [0, 2π)

I Multivariate version (say p-dim) is easy to specify. With
multivariate density g on Rp,

f (θ) =
∞∑

k1=−∞
...

∞∑
kp=−∞

g(θ + 2πk)

I Convenient choice is a multivariate normal



The univariate wrapped normal
I WN(µ, σ2) density takes the form, for 0 ≤ θ < 2π:

f (θ) =
∞∑

k=−∞
g(θ+2kπ) =

1

σ
√

2π

∞∑
k=−∞

exp(−(θ + 2kπ − µ)2

2σ2
).

I E (Z ) = e−σ
2/2e iµ so µ is the linear mean with µ = µ̃+ 2πKµ

with µ̃ ∈ [0, 2π) the mean direction and c = e−σ
2/2 is

concentration

I θ is observed; θ + 2Kπ is the linear variable; K is latent

I Joint density for θ and K is f (θ, k) = g(θ + 2kπ) =

1

σ
√

2π
exp(−(θ + 2kπ − µ)2

2σ2
), 0 ≤ θ < 2π,K ∈ {0,±1,±2, ...}

I Removes the doubly infinite sum; suggests adding K as a
latent variable



Wrapped Gaussian Processes

I Recall the multivariate wrapped distribution:

f (θ) =
∞∑

k1=−∞
...

∞∑
kp=−∞

g(θ + 2πk)

I Here θ is observed vector, θ + 2πK is the linear vector, K is
the latent vector

I Again, the joint density for (θ,K) is f (θ,K) = g(θ + 2πk)

I Since GP’s are specified through their finite dimensional
distributions, we can induce a wrapped GP from a linear GP.
In particular, if linear GP has covariance function
σ2ρ(s − s ′;φ), then

θ = (θ(s1), θ(s2), ..., θ(sn)) ∼WN(µ1, σ2R(φ))

where R(φ)ij = ρ(si − sj ;φ)



Remarks

I A common mean, µ, for all locations, hence a common µ̃. A
regression form would be for µ̃(s) and requires a suitable link
function

I Can directly extend to wrapped t-process using usual mixing
of GP to t-process

I We define the wrapped GP through the dependence structure
of the linear GP.

I Correlation measure for a pair of directions? Can we obtain a
sensible induced covariance function?



Association structure

I What should association between θ(s) and θ(s ′) mean?

I What good properties should we require for a correlation
between dependent directions?

I In particular, how can we connect the covariance function of
the linear GP to that of the wrapped GP?

I Properties of a circular correlation coefficient:
I ρc(θ1, θ2) should not depend upon the “zero” direction
I ρc(θ1, θ2) = ρc(θ2, θ1)
I |ρc(θ1, θ2)| ≤ 1
I ρc(θ1, θ2) = 0 if θ1, θ2 indep

I Jammalamadaka and Sarma (1988) provide the following
measure which satisifies the above properties

ρc(θ1, θ2) =
E (sin(θ1 − µ1)sin(θ2 − µ2))√

Var(sin(θ1 − µ1))Var(sin(θ2 − µ2))



For the Wrapped Normal

I For the WN, this measure takes a simple form

I For

(
θ1

θ2

)
∼ WN(

(
µ1

µ2

)
,

(
σ2 ρσ2

ρσ2 σ2

)
), we have

ρc(θ1, θ2) = sinh(ρσ2)

sinh(σ2)

I So, if linear GP has cov function σ2ρ(s, s ′), induced
covariance function is sinh(σ2ρ(s, s ′))

I Easy to see that this is a valid covariance function



Fitting a wrapped GP model

I Introduce latent Ki ’s. With a WN prior for µ and a
right-censored inverse Gamma prior for σ2

I What about φ?

I With Matérn correlation function, we have difficulty
identifying both σ2 and φ.

I However, can work with uniform priors for φ, jointly updating
φ and σ2

I The full conditionals for the Ki are immediate from the
conditional normal distribution of
[θi + 2πki |θj + 2πkj , j 6= i , µ, σ2, φ]

I We use adaptive truncation for the Ki ’s as above. Discard
posterior samples of K; only interested in those for µ, σ2

I Kriging is straightforward



Projection Approach

I An embedding approach - unit circle within R2

I U = (U1,U2) ∼ g(u1, u2), a density on R2

I Then (V1,V2) = ( U1
||U|| ,

U2
||U||) where ||U|| is the length of U, is

a point on the unit circle, associated angle is
θ = atan2V2

V1
= atan2U2

U1

I In fact, U1 = Rcosθ and U2 = Rsinθ, R latent

I R = ||U|| , V1 = cosθ, V2 = sinθ

I Again, angular mean direction is atan2 Esinθ
Ecosθ = E(V2)

E(V1) 6=
E(U2)
E(U1)

I Concentration is ||E (V|| ≤ 1



Projection cont.

I Projected normal distribution. Suppose the random vector
U ∼ N2(µ,Σ), then θ ∼ PN2(µ,Σ).

I More flexible - can be asymmetric, bimodal

I Easy for regression - linear model in covariates for µ - but
may be hard to interpret, a regression for each component

I A nice characterization: The collection of mixtures of
projected normals is dense in the class of all circular
distributions

I Difficult to work with for dimension > 2.



Projected normal

I The density can be obtained explicitly but is very messy.

I Instead, we would use polar coordinates working with the joint
density of (θ,R) derived as a transformation from (U1,U2),
treating R as a latent variable

I f (r , θ|µ,Σ) = (2π)−1|Σ|−
1
2 exp

(
− (ru−µ)′Σ−1(ru−µ)

2

)
r



cont.

I What do projected normal densities look like?

I The form with general Σ has only been considered
theoretically; data analysis and inference has only been
considered so far for the case Σ = I .

I In this latter case, the PN densities are symmetric, unimodal
(and the uniform arises when µ1 = µ2 = 0).

I When Σ = I , the mean direction µ = atan2µ1
µ2

, closed form for
ρ (Kendall, 1974).

I In this case, the PN can be compared with the von Mises.
Both have two parameters and can line up their directions and
resultants.







cont.

I We work with the more general Σ case

I Can draw pictures of the density in terms of five parameters in
µ and Σ. We can achieve asymmetry and bimodality

I With regard to inference, an identifiability issue: Note that if
we scale U by a, the distribution of θ doesn’t change

I To make identifiable, set Σ =

(
τ2 ρτ
ρτ 1

)
I We have a four parameter model



Model fitting and inference

I Bayesian model fitting is straightforward. With observed θi ’s
and latent Ri ’s, we convert to U1i ’s and U2i ’s. Update β’s
and τ2 and ρ under a standard bivariate Gaussian setup.

I The Ri ’s have an explicit closed form full conditional (M-H
step with Gamma proposal)

I When Σ 6= I , we achieve better out-of-sample prediction using
the correct model rather than the incorrect model

I Comparing an observed hold-out θ with an estimate of its
mean direction is not sensible with bimodal densities

I With holdout, we use a predictive log likelihood loss (PLSL)
and the cumulative rank probability score (CRPS; Grimit et
al., 2006)





Spatial PN models

I Finally, we return to the case of {θ(si ), i = 1, 2, ..., n}
I In the independence case, we had latent independent Ui ’s

modeled as bivariate normal

I Now, we assume latent U(si ) from a bivariate Gaussian
process

I This induces a spatial process for the θ(si ) which we call the
Projected Normal GP

I Many ways to specify the bivariate GP; separable
cross-covariance function

I Kriging is, again, straightforward. We can krige posterior
predictive samples of say U(s0) which, in turn induce posterior
predictive samples of θ(si )

I We can easily insert spatial regressors, X(s) in the µ(s),
analogous to the independence case.









Model fitting

I From the joint distribution of {U(si )} can write the joint
distribution of {θ(si ), r(si )}.

I So, now need to update r(si )|“everything else”. But same
idea as before; now the conditional distribution of
U(si )|“everything else” is a conditional normal so again, an
explicit form for the full conditional for r(si ).

I Start with separable cross covariance functions for U(s)

I From the separable cross covariance function, we can explore
the induced covariance function for θ(s)

I ρ is stationary in U(s) process, joint dist for (θ(s), θ(s ′)) will
depend on s − s ′ but no implied form for correlation.

I General form proposed in Jammalamadaka and Sarma. Not
likely to be a valid correlation function



Adriatic Wave Data

I Data outputs from a deterministic wave model implemented
by ISPRA (Istituto Superiore per la Protezione e la Ricerca
Ambientale) for the Adriatic Sea

I On a grid with ≈ 12.5× 12.5 km cells.

I A random set of 250 irregular locations, 50 for validation

I Static spatial analysis - a single time slice (hour) separately
during a calm period and a stormy period

I Very strong spatial dependence for the directions yields very
slow decay implying a range beyond the largest pairwise
distance in our dataset.









Inference

I For kriging, CRPS values in calm period are 0.0889 (genPGP),
0.0970 (T=I PGP) and 0.6860 nonspatial genPGP)

I The PLSL values are −62.81, −39.49 and 172.13.

I For storm, CRPS values are 0.0726, 0.0682 and 0.5432, PLSL
values are −110.14, −99.17 and 140.46

I General PGP and wrapped GP comparison - kriging for hold
out locations and corresponding circular distances

I For calm time slice, 0.0222 for general PGP, 0.3743 for the
wrapped GP; for storm time slice, 0.0217 and 0.1516

I More variation in wave directions during a calm period.
General PGP outperforms T=I PGP.

I In storm not much difference. Concentration in a common
direction; data does not require genPGP








